JSArray.cpp 71.6 KB
Newer Older
darin's avatar
darin committed
1 2
/*
 *  Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
3
 *  Copyright (C) 2003, 2007, 2008, 2009 Apple Inc. All rights reserved.
darin's avatar
darin committed
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 *  Copyright (C) 2003 Peter Kelly (pmk@post.com)
 *  Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include "config.h"
darin@apple.com's avatar
darin@apple.com committed
24
#include "JSArray.h"
darin's avatar
darin committed
25

darin@apple.com's avatar
darin@apple.com committed
26
#include "ArrayPrototype.h"
27 28
#include "BumpSpace.h"
#include "BumpSpaceInlineMethods.h"
29
#include "CachedCall.h"
30
#include "Error.h"
31
#include "Executable.h"
32
#include "GetterSetter.h"
darin's avatar
darin committed
33
#include "PropertyNameArray.h"
ap@webkit.org's avatar
ap@webkit.org committed
34
#include <wtf/AVLTree.h>
35
#include <wtf/Assertions.h>
36
#include <wtf/OwnPtr.h>
37
#include <Operations.h>
darin's avatar
darin committed
38

39
using namespace std;
ap@webkit.org's avatar
ap@webkit.org committed
40
using namespace WTF;
bdash's avatar
bdash committed
41

42
namespace JSC {
darin's avatar
darin committed
43

ggaren@apple.com's avatar
ggaren@apple.com committed
44 45
ASSERT_CLASS_FITS_IN_CELL(JSArray);

barraclough@apple.com's avatar
barraclough@apple.com committed
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
// Overview of JSArray
//
// Properties of JSArray objects may be stored in one of three locations:
//   * The regular JSObject property map.
//   * A storage vector.
//   * A sparse map of array entries.
//
// Properties with non-numeric identifiers, with identifiers that are not representable
// as an unsigned integer, or where the value is greater than  MAX_ARRAY_INDEX
// (specifically, this is only one property - the value 0xFFFFFFFFU as an unsigned 32-bit
// integer) are not considered array indices and will be stored in the JSObject property map.
//
// All properties with a numeric identifer, representable as an unsigned integer i,
// where (i <= MAX_ARRAY_INDEX), are an array index and will be stored in either the
// storage vector or the sparse map.  An array index i will be handled in the following
// fashion:
//
63 64
//   * Where (i < MIN_SPARSE_ARRAY_INDEX) the value will be stored in the storage vector,
//     unless the array is in SparseMode in which case all properties go into the map.
barraclough@apple.com's avatar
barraclough@apple.com committed
65 66 67 68 69 70 71 72 73
//   * Where (MIN_SPARSE_ARRAY_INDEX <= i <= MAX_STORAGE_VECTOR_INDEX) the value will either
//     be stored in the storage vector or in the sparse array, depending on the density of
//     data that would be stored in the vector (a vector being used where at least
//     (1 / minDensityMultiplier) of the entries would be populated).
//   * Where (MAX_STORAGE_VECTOR_INDEX < i <= MAX_ARRAY_INDEX) the value will always be stored
//     in the sparse array.

// The definition of MAX_STORAGE_VECTOR_LENGTH is dependant on the definition storageSize
// function below - the MAX_STORAGE_VECTOR_LENGTH limit is defined such that the storage
74 75 76
// size calculation cannot overflow.  (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>)) +
// (vectorLength * sizeof(WriteBarrier<Unknown>)) must be <= 0xFFFFFFFFU (which is maximum value of size_t).
#define MAX_STORAGE_VECTOR_LENGTH static_cast<unsigned>((0xFFFFFFFFU - (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>))) / sizeof(WriteBarrier<Unknown>))
barraclough@apple.com's avatar
barraclough@apple.com committed
77 78 79 80 81

// These values have to be macros to be used in max() and min() without introducing
// a PIC branch in Mach-O binaries, see <rdar://problem/5971391>.
#define MIN_SPARSE_ARRAY_INDEX 10000U
#define MAX_STORAGE_VECTOR_INDEX (MAX_STORAGE_VECTOR_LENGTH - 1)
82
// 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer.
barraclough@apple.com's avatar
barraclough@apple.com committed
83
#define MAX_ARRAY_INDEX 0xFFFFFFFEU
darin's avatar
darin committed
84

85 86 87 88 89 90 91 92
// The value BASE_VECTOR_LEN is the maximum number of vector elements we'll allocate
// for an array that was created with a sepcified length (e.g. a = new Array(123))
#define BASE_VECTOR_LEN 4U
    
// The upper bound to the size we'll grow a zero length array when the first element
// is added.
#define FIRST_VECTOR_GROW 4U

darin's avatar
darin committed
93
// Our policy for when to use a vector and when to use a sparse map.
barraclough@apple.com's avatar
barraclough@apple.com committed
94 95
// For all array indices under MIN_SPARSE_ARRAY_INDEX, we always use a vector.
// When indices greater than MIN_SPARSE_ARRAY_INDEX are involved, we use a vector
darin's avatar
darin committed
96 97 98
// as long as it is 1/8 full. If more sparse than that, we use a map.
static const unsigned minDensityMultiplier = 8;

99
const ClassInfo JSArray::s_info = {"Array", &JSNonFinalObject::s_info, 0, 0, CREATE_METHOD_TABLE(JSArray)};
darin's avatar
darin committed
100

101 102 103 104 105
// We keep track of the size of the last array after it was grown.  We use this
// as a simple heuristic for as the value to grow the next array from size 0.
// This value is capped by the constant FIRST_VECTOR_GROW defined above.
static unsigned lastArraySize = 0;

darin's avatar
darin committed
106 107
static inline size_t storageSize(unsigned vectorLength)
{
barraclough@apple.com's avatar
barraclough@apple.com committed
108 109 110 111
    ASSERT(vectorLength <= MAX_STORAGE_VECTOR_LENGTH);

    // MAX_STORAGE_VECTOR_LENGTH is defined such that provided (vectorLength <= MAX_STORAGE_VECTOR_LENGTH)
    // - as asserted above - the following calculation cannot overflow.
112
    size_t size = (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>)) + (vectorLength * sizeof(WriteBarrier<Unknown>));
barraclough@apple.com's avatar
barraclough@apple.com committed
113 114
    // Assertion to detect integer overflow in previous calculation (should not be possible, provided that
    // MAX_STORAGE_VECTOR_LENGTH is correctly defined).
115
    ASSERT(((size - (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>))) / sizeof(WriteBarrier<Unknown>) == vectorLength) && (size >= (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>))));
barraclough@apple.com's avatar
barraclough@apple.com committed
116 117

    return size;
darin's avatar
darin committed
118 119 120 121
}

static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues)
{
122
    return length <= MIN_SPARSE_ARRAY_INDEX || length / minDensityMultiplier <= numValues;
darin's avatar
darin committed
123 124
}

125 126
#if !CHECK_ARRAY_CONSISTENCY

darin@apple.com's avatar
darin@apple.com committed
127
inline void JSArray::checkConsistency(ConsistencyCheckType)
128 129 130 131 132
{
}

#endif

133 134
JSArray::JSArray(JSGlobalData& globalData, Structure* structure)
    : JSNonFinalObject(globalData, structure)
135
    , m_indexBias(0)
136
    , m_storage(0)
137 138
    , m_sparseValueMap(0)
    , m_subclassData(0)
weinig@apple.com's avatar
weinig@apple.com committed
139
{
140 141
}

142
void JSArray::finishCreation(JSGlobalData& globalData, unsigned initialLength)
143 144
{
    Base::finishCreation(globalData);
145 146
    ASSERT(inherits(&s_info));

147 148
    unsigned initialVectorLength = BASE_VECTOR_LEN;
    unsigned initialStorageSize = storageSize(initialVectorLength);
weinig@apple.com's avatar
weinig@apple.com committed
149

150 151 152 153 154
    void* newStorage = 0;
    if (!globalData.heap.tryAllocateStorage(initialStorageSize, &newStorage))
        CRASH();
    
    m_storage = static_cast<ArrayStorage*>(newStorage);
155
    m_storage->m_allocBase = m_storage;
156 157 158 159 160 161
    m_storage->m_length = initialLength;
    m_vectorLength = initialVectorLength;
    m_storage->m_numValuesInVector = 0;
#if CHECK_ARRAY_CONSISTENCY
    m_storage->m_inCompactInitialization = false;
#endif
weinig@apple.com's avatar
weinig@apple.com committed
162

163 164 165
    WriteBarrier<Unknown>* vector = m_storage->m_vector;
    for (size_t i = 0; i < initialVectorLength; ++i)
        vector[i].clear();
166

167
    checkConsistency();
weinig@apple.com's avatar
weinig@apple.com committed
168 169
}

170
JSArray* JSArray::tryFinishCreationUninitialized(JSGlobalData& globalData, unsigned initialLength)
darin's avatar
darin committed
171
{
172
    Base::finishCreation(globalData);
173 174
    ASSERT(inherits(&s_info));

175 176 177 178 179 180 181
    // Check for lengths larger than we can handle with a vector.
    if (initialLength > MAX_STORAGE_VECTOR_LENGTH)
        return 0;

    unsigned initialVectorLength = max(initialLength, BASE_VECTOR_LEN);
    unsigned initialStorageSize = storageSize(initialVectorLength);

182 183 184 185 186
    void* newStorage = 0;
    if (!globalData.heap.tryAllocateStorage(initialStorageSize, &newStorage))
        CRASH();
    
    m_storage = static_cast<ArrayStorage*>(newStorage);
187
    m_storage->m_allocBase = m_storage;
188 189 190
    m_storage->m_length = 0;
    m_vectorLength = initialVectorLength;
    m_storage->m_numValuesInVector = initialLength;
191

192
#if CHECK_ARRAY_CONSISTENCY
193
    m_storage->m_inCompactInitialization = true;
194
#endif
195

196 197 198 199 200
    WriteBarrier<Unknown>* vector = m_storage->m_vector;
    for (size_t i = initialLength; i < initialVectorLength; ++i)
        vector[i].clear();

    return this;
darin's avatar
darin committed
201 202
}

203 204
// This function can be called multiple times on the same object.
void JSArray::finalize(JSCell* cell)
darin's avatar
darin committed
205
{
206 207 208
    JSArray* thisObject = jsCast<JSArray*>(cell);
    thisObject->checkConsistency(DestructorConsistencyCheck);
    thisObject->deallocateSparseMap();
209 210
}

211
inline std::pair<SparseArrayValueMap::iterator, bool> SparseArrayValueMap::add(JSArray* array, unsigned i)
212
{
213 214 215 216 217 218 219 220
    SparseArrayEntry entry;
    std::pair<iterator, bool> result = m_map.add(i, entry);
    size_t capacity = m_map.capacity();
    if (capacity != m_reportedCapacity) {
        Heap::heap(array)->reportExtraMemoryCost((capacity - m_reportedCapacity) * (sizeof(unsigned) + sizeof(WriteBarrier<Unknown>)));
        m_reportedCapacity = capacity;
    }
    return result;
221 222
}

223
inline void SparseArrayValueMap::put(ExecState* exec, JSArray* array, unsigned i, JSValue value)
224
{
225 226
    SparseArrayEntry& entry = add(array, i).first->second;

227
    if (!(entry.attributes & Accessor)) {
228 229 230 231 232 233 234
        if (entry.attributes & ReadOnly) {
            // FIXME: should throw if being called from strict mode.
            // throwTypeError(exec, StrictModeReadonlyPropertyWriteError);
            return;
        }

        entry.set(exec->globalData(), array, value);
235
        return;
236
    }
237

238 239 240 241 242 243 244
    JSValue accessor = entry.Base::get();
    ASSERT(accessor.isGetterSetter());
    JSObject* setter = asGetterSetter(accessor)->setter();
    
    if (!setter) {
        throwTypeError(exec, "setting a property that has only a getter");
        return;
245
    }
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

    CallData callData;
    CallType callType = setter->methodTable()->getCallData(setter, callData);
    MarkedArgumentBuffer args;
    args.append(value);
    call(exec, setter, callType, callData, array, args);
}

inline void SparseArrayEntry::get(PropertySlot& slot) const
{
    JSValue value = Base::get();
    ASSERT(value);

    if (LIKELY(!value.isGetterSetter())) {
        slot.setValue(value);
        return;
    }

    JSObject* getter = asGetterSetter(value)->getter();
    if (!getter) {
        slot.setUndefined();
        return;
    }

    slot.setGetterSlot(getter);
}

inline void SparseArrayEntry::get(PropertyDescriptor& descriptor) const
{
    descriptor.setDescriptor(Base::get(), attributes);
}

inline JSValue SparseArrayEntry::get(ExecState* exec, JSArray* array) const
{
    JSValue result = Base::get();
    ASSERT(result);

    if (LIKELY(!result.isGetterSetter()))
        return result;

    JSObject* getter = asGetterSetter(result)->getter();
    if (!getter)
        return jsUndefined();

    CallData callData;
    CallType callType = getter->methodTable()->getCallData(getter, callData);
    return call(exec, getter, callType, callData, array, exec->emptyList());
}

inline JSValue SparseArrayEntry::getNonSparseMode() const
{
    ASSERT(!attributes);
    return Base::get();
299 300 301 302 303 304 305 306 307
}

inline void SparseArrayValueMap::visitChildren(SlotVisitor& visitor)
{
    iterator end = m_map.end();
    for (iterator it = m_map.begin(); it != end; ++it)
        visitor.append(&it->second);
}

308 309 310 311 312 313 314 315 316 317 318 319 320
void JSArray::allocateSparseMap(JSGlobalData& globalData)
{
    m_sparseValueMap = new SparseArrayValueMap;
    globalData.heap.addFinalizer(this, finalize);
}

void JSArray::deallocateSparseMap()
{
    delete m_sparseValueMap;
    m_sparseValueMap = 0;
}

void JSArray::enterDictionaryMode(JSGlobalData& globalData)
321 322
{
    ArrayStorage* storage = m_storage;
323
    SparseArrayValueMap* map = m_sparseValueMap;
324

325 326 327 328
    if (!map) {
        allocateSparseMap(globalData);
        map = m_sparseValueMap;
    }
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

    if (map->sparseMode())
        return;

    map->setSparseMode();

    unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
    for (unsigned i = 0; i < usedVectorLength; ++i) {
        JSValue value = storage->m_vector[i].get();
        // This will always be a new entry in the map, so no need to check we can write,
        // and attributes are default so no need to set them.
        if (value)
            map->add(this, i).first->second.set(globalData, this, value);
    }

344 345 346 347 348
    void* newRawStorage = 0;
    if (!globalData.heap.tryAllocateStorage(storageSize(0), &newRawStorage))
        CRASH();
    
    ArrayStorage* newStorage = static_cast<ArrayStorage*>(newRawStorage);
349 350 351 352 353 354 355 356 357 358 359 360
    memcpy(newStorage, m_storage, storageSize(0));
    newStorage->m_allocBase = newStorage;
    m_storage = newStorage;
    m_indexBias = 0;
    m_vectorLength = 0;
}

void JSArray::putDescriptor(ExecState* exec, SparseArrayEntry* entryInMap, PropertyDescriptor& descriptor, PropertyDescriptor& oldDescriptor)
{
    if (descriptor.isDataDescriptor()) {
        if (descriptor.value())
            entryInMap->set(exec->globalData(), this, descriptor.value());
361 362
        else if (oldDescriptor.isAccessorDescriptor())
            entryInMap->set(exec->globalData(), this, jsUndefined());
363
        entryInMap->attributes = descriptor.attributesOverridingCurrent(oldDescriptor) & ~Accessor;
364 365 366 367 368
        return;
    }

    if (descriptor.isAccessorDescriptor()) {
        JSObject* getter = 0;
369 370 371 372
        if (descriptor.getterPresent())
            getter = descriptor.getterObject();
        else if (oldDescriptor.isAccessorDescriptor())
            getter = oldDescriptor.getterObject();
373
        JSObject* setter = 0;
374 375 376 377
        if (descriptor.setterPresent())
            setter = descriptor.setterObject();
        else if (oldDescriptor.isAccessorDescriptor())
            setter = oldDescriptor.setterObject();
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

        GetterSetter* accessor = GetterSetter::create(exec);
        if (getter)
            accessor->setGetter(exec->globalData(), getter);
        if (setter)
            accessor->setSetter(exec->globalData(), setter);

        entryInMap->set(exec->globalData(), this, accessor);
        entryInMap->attributes = descriptor.attributesOverridingCurrent(oldDescriptor) & ~DontDelete;
        return;
    }

    ASSERT(descriptor.isGenericDescriptor());
    entryInMap->attributes = descriptor.attributesOverridingCurrent(oldDescriptor);
}

static bool reject(ExecState* exec, bool throwException, const char* message)
{
    if (throwException)
        throwTypeError(exec, message);
    return false;
}

// Defined in ES5.1 8.12.9
bool JSArray::defineOwnNumericProperty(ExecState* exec, unsigned index, PropertyDescriptor& descriptor, bool throwException)
{
    ASSERT(index != 0xFFFFFFFF);

    if (!inSparseMode()) {
        // Fast case: we're putting a regular property to a regular array
        // FIXME: this will pessimistically assume that if attributes are missing then they'll default to false
        // – however if the property currently exists missing attributes will override from their current 'true'
        // state (i.e. defineOwnProperty could be used to set a value without needing to entering 'SparseMode').
        if (!descriptor.attributes()) {
            ASSERT(!descriptor.isAccessorDescriptor());
            putByIndex(this, exec, index, descriptor.value());
            return true;
        }

417
        enterDictionaryMode(exec->globalData());
418 419
    }

420
    SparseArrayValueMap* map = m_sparseValueMap;
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
    ASSERT(map);

    // 1. Let current be the result of calling the [[GetOwnProperty]] internal method of O with property name P.
    std::pair<SparseArrayValueMap::iterator, bool> result = map->add(this, index);
    SparseArrayEntry* entryInMap = &result.first->second;

    // 2. Let extensible be the value of the [[Extensible]] internal property of O.
    // 3. If current is undefined and extensible is false, then Reject.
    // 4. If current is undefined and extensible is true, then
    if (result.second) {
        if (!isExtensible()) {
            map->remove(result.first);
            return reject(exec, throwException, "Attempting to define property on object that is not extensible.");
        }

        // 4.a. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then create an own data property
        // named P of object O whose [[Value]], [[Writable]], [[Enumerable]] and [[Configurable]] attribute values
        // are described by Desc. If the value of an attribute field of Desc is absent, the attribute of the newly
        // created property is set to its default value.
        // 4.b. Else, Desc must be an accessor Property Descriptor so, create an own accessor property named P of
        // object O whose [[Get]], [[Set]], [[Enumerable]] and [[Configurable]] attribute values are described by
        // Desc. If the value of an attribute field of Desc is absent, the attribute of the newly created property
        // is set to its default value.
        // 4.c. Return true.

        PropertyDescriptor defaults;
        entryInMap->setWithoutWriteBarrier(jsUndefined());
        entryInMap->attributes = DontDelete | DontEnum | ReadOnly;
        entryInMap->get(defaults);

        putDescriptor(exec, entryInMap, descriptor, defaults);
        if (index >= m_storage->m_length)
            m_storage->m_length = index + 1;
        return true;
    }

    // 5. Return true, if every field in Desc is absent.
    // 6. Return true, if every field in Desc also occurs in current and the value of every field in Desc is the same value as the corresponding field in current when compared using the SameValue algorithm (9.12).
    PropertyDescriptor current;
    entryInMap->get(current);
    if (descriptor.isEmpty() || descriptor.equalTo(exec, current))
        return true;

    // 7. If the [[Configurable]] field of current is false then
    if (!current.configurable()) {
        // 7.a. Reject, if the [[Configurable]] field of Desc is true.
467
        if (descriptor.configurablePresent() && !descriptor.configurable())
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
            return reject(exec, throwException, "Attempting to change configurable attribute of unconfigurable property.");
        // 7.b. Reject, if the [[Enumerable]] field of Desc is present and the [[Enumerable]] fields of current and Desc are the Boolean negation of each other.
        if (descriptor.enumerablePresent() && current.enumerable() != descriptor.enumerable())
            return reject(exec, throwException, "Attempting to change enumerable attribute of unconfigurable property.");
    }

    // 8. If IsGenericDescriptor(Desc) is true, then no further validation is required.
    if (!descriptor.isGenericDescriptor()) {
        // 9. Else, if IsDataDescriptor(current) and IsDataDescriptor(Desc) have different results, then
        if (current.isDataDescriptor() != descriptor.isDataDescriptor()) {
            // 9.a. Reject, if the [[Configurable]] field of current is false.
            if (!current.configurable())
                return reject(exec, throwException, "Attempting to change access mechanism for an unconfigurable property.");
            // 9.b. If IsDataDescriptor(current) is true, then convert the property named P of object O from a
            // data property to an accessor property. Preserve the existing values of the converted property‘s
            // [[Configurable]] and [[Enumerable]] attributes and set the rest of the property‘s attributes to
            // their default values.
            // 9.c. Else, convert the property named P of object O from an accessor property to a data property.
            // Preserve the existing values of the converted property‘s [[Configurable]] and [[Enumerable]]
            // attributes and set the rest of the property‘s attributes to their default values.
        } else if (current.isDataDescriptor() && descriptor.isDataDescriptor()) {
            // 10. Else, if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true, then
            // 10.a. If the [[Configurable]] field of current is false, then
            if (!current.configurable() && !current.writable()) {
                // 10.a.i. Reject, if the [[Writable]] field of current is false and the [[Writable]] field of Desc is true.
                if (descriptor.writable())
                    return reject(exec, throwException, "Attempting to change writable attribute of unconfigurable property.");
                // 10.a.ii. If the [[Writable]] field of current is false, then
                // 10.a.ii.1. Reject, if the [[Value]] field of Desc is present and SameValue(Desc.[[Value]], current.[[Value]]) is false.
                if (descriptor.value() && !sameValue(exec, descriptor.value(), current.value()))
                    return reject(exec, throwException, "Attempting to change value of a readonly property.");
            }
            // 10.b. else, the [[Configurable]] field of current is true, so any change is acceptable.
        } else {
502
            ASSERT(current.isAccessorDescriptor() && current.getterPresent() && current.setterPresent());
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
            // 11. Else, IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) are both true so, if the [[Configurable]] field of current is false, then
            if (!current.configurable()) {
                // 11.i. Reject, if the [[Set]] field of Desc is present and SameValue(Desc.[[Set]], current.[[Set]]) is false.
                if (descriptor.setterPresent() && descriptor.setter() != current.setter())
                    return reject(exec, throwException, "Attempting to change the setter of an unconfigurable property.");
                // 11.ii. Reject, if the [[Get]] field of Desc is present and SameValue(Desc.[[Get]], current.[[Get]]) is false.
                if (descriptor.getterPresent() && descriptor.getter() != current.getter())
                    return reject(exec, throwException, "Attempting to change the getter of an unconfigurable property.");
            }
        }
    }

    // 12. For each attribute field of Desc that is present, set the correspondingly named attribute of the property named P of object O to the value of the field.
    putDescriptor(exec, entryInMap, descriptor, current);
    // 13. Return true.
    return true;
}

void JSArray::setLengthWritable(ExecState* exec, bool writable)
{
    ASSERT(isLengthWritable() || !writable);
    if (!isLengthWritable() || writable)
        return;

527
    enterDictionaryMode(exec->globalData());
528

529
    SparseArrayValueMap* map = m_sparseValueMap;
530 531 532 533 534 535 536 537 538 539 540 541 542
    ASSERT(map);
    map->setLengthIsReadOnly();
}

// Defined in ES5.1 15.4.5.1
bool JSArray::defineOwnProperty(JSObject* object, ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor, bool throwException)
{
    JSArray* array = static_cast<JSArray*>(object);

    // 3. If P is "length", then
    if (propertyName == exec->propertyNames().length) {
        // All paths through length definition call the default [[DefineOwnProperty]], hence:
        // from ES5.1 8.12.9 7.a.
543
        if (descriptor.configurablePresent() && descriptor.configurable())
544 545
            return reject(exec, throwException, "Attempting to change configurable attribute of unconfigurable property.");
        // from ES5.1 8.12.9 7.b.
546
        if (descriptor.enumerablePresent() && descriptor.enumerable())
547 548 549 550 551 552 553
            return reject(exec, throwException, "Attempting to change enumerable attribute of unconfigurable property.");

        // a. If the [[Value]] field of Desc is absent, then
        // a.i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", Desc, and Throw as arguments.
        if (descriptor.isAccessorDescriptor())
            return reject(exec, throwException, "Attempting to change access mechanism for an unconfigurable property.");
        // from ES5.1 8.12.9 10.a.
554
        if (!array->isLengthWritable() && descriptor.writablePresent() && descriptor.writable())
555 556 557
            return reject(exec, throwException, "Attempting to change writable attribute of unconfigurable property.");
        // This descriptor is either just making length read-only, or changing nothing!
        if (!descriptor.value()) {
558 559
            if (descriptor.writablePresent())
                array->setLengthWritable(exec, descriptor.writable());
560 561 562 563 564 565 566 567 568 569 570 571 572 573
            return true;
        }
        
        // b. Let newLenDesc be a copy of Desc.
        // c. Let newLen be ToUint32(Desc.[[Value]]).
        unsigned newLen = descriptor.value().toUInt32(exec);
        // d. If newLen is not equal to ToNumber( Desc.[[Value]]), throw a RangeError exception.
        if (newLen != descriptor.value().toNumber(exec)) {
            throwError(exec, createRangeError(exec, "Invalid array length"));
            return false;
        }

        // Based on SameValue check in 8.12.9, this is always okay.
        if (newLen == array->length()) {
574 575
            if (descriptor.writablePresent())
                array->setLengthWritable(exec, descriptor.writable());
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
            return true;
        }

        // e. Set newLenDesc.[[Value] to newLen.
        // f. If newLen >= oldLen, then
        // f.i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and Throw as arguments.
        // g. Reject if oldLenDesc.[[Writable]] is false.
        if (!array->isLengthWritable())
            return reject(exec, throwException, "Attempting to change value of a readonly property.");
        
        // h. If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true.
        // i. Else,
        // i.i. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be deleted.
        // i.ii. Let newWritable be false.
        // i.iii. Set newLenDesc.[[Writable] to true.
        // j. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and Throw as arguments.
        // k. If succeeded is false, return false.
        // l. While newLen < oldLen repeat,
        // l.i. Set oldLen to oldLen – 1.
        // l.ii. Let deleteSucceeded be the result of calling the [[Delete]] internal method of A passing ToString(oldLen) and false as arguments.
        // l.iii. If deleteSucceeded is false, then
597
        if (!array->setLength(exec, newLen, throwException)) {
598 599 600 601
            // 1. Set newLenDesc.[[Value] to oldLen+1.
            // 2. If newWritable is false, set newLenDesc.[[Writable] to false.
            // 3. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and false as arguments.
            // 4. Reject.
602 603
            if (descriptor.writablePresent())
                array->setLengthWritable(exec, descriptor.writable());
604 605 606 607
            return false;
        }

        // m. If newWritable is false, then
608 609 610 611 612
        // i. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length",
        //    Property Descriptor{[[Writable]]: false}, and false as arguments. This call will always
        //    return true.
        if (descriptor.writablePresent())
            array->setLengthWritable(exec, descriptor.writable());
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
        // n. Return true.
        return true;
    }

    // 4. Else if P is an array index (15.4), then
    bool isArrayIndex;
    // a. Let index be ToUint32(P).
    unsigned index = propertyName.toArrayIndex(isArrayIndex);
    if (isArrayIndex) {
        // b. Reject if index >= oldLen and oldLenDesc.[[Writable]] is false.
        if (index >= array->length() && !array->isLengthWritable())
            return reject(exec, throwException, "Attempting to define numeric property on array with non-writable length property.");
        // c. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing P, Desc, and false as arguments.
        // d. Reject if succeeded is false.
        // e. If index >= oldLen
        // e.i. Set oldLenDesc.[[Value]] to index + 1.
        // e.ii. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", oldLenDesc, and false as arguments. This call will always return true.
        // f. Return true.
        return array->defineOwnNumericProperty(exec, index, descriptor, throwException);
    }

    return JSObject::defineOwnProperty(object, exec, propertyName, descriptor, throwException);
}

637
bool JSArray::getOwnPropertySlotByIndex(JSCell* cell, ExecState* exec, unsigned i, PropertySlot& slot)
638
{
639
    JSArray* thisObject = jsCast<JSArray*>(cell);
640
    ArrayStorage* storage = thisObject->m_storage;
641

ggaren@apple.com's avatar
ggaren@apple.com committed
642
    if (i >= storage->m_length) {
barraclough@apple.com's avatar
barraclough@apple.com committed
643
        if (i > MAX_ARRAY_INDEX)
644
            return thisObject->methodTable()->getOwnPropertySlot(thisObject, exec, Identifier::from(exec, i), slot);
darin's avatar
darin committed
645 646 647
        return false;
    }

648
    if (i < thisObject->m_vectorLength) {
649 650 651
        JSValue value = storage->m_vector[i].get();
        if (value) {
            slot.setValue(value);
darin's avatar
darin committed
652 653
            return true;
        }
654
    } else if (SparseArrayValueMap* map = thisObject->m_sparseValueMap) {
655 656
        SparseArrayValueMap::iterator it = map->find(i);
        if (it != map->notFound()) {
657
            it->second.get(slot);
658
            return true;
darin's avatar
darin committed
659 660 661
        }
    }

662
    return JSObject::getOwnPropertySlot(thisObject, exec, Identifier::from(exec, i), slot);
darin's avatar
darin committed
663 664
}

665 666
bool JSArray::getOwnPropertySlot(JSCell* cell, ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
{
667
    JSArray* thisObject = jsCast<JSArray*>(cell);
darin's avatar
darin committed
668
    if (propertyName == exec->propertyNames().length) {
669
        slot.setValue(jsNumber(thisObject->length()));
darin's avatar
darin committed
670 671 672 673
        return true;
    }

    bool isArrayIndex;
674
    unsigned i = propertyName.toArrayIndex(isArrayIndex);
darin's avatar
darin committed
675
    if (isArrayIndex)
676
        return JSArray::getOwnPropertySlotByIndex(thisObject, exec, i, slot);
darin's avatar
darin committed
677

678
    return JSObject::getOwnPropertySlot(thisObject, exec, propertyName, slot);
darin's avatar
darin committed
679 680
}

681
bool JSArray::getOwnPropertyDescriptor(JSObject* object, ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor)
682
{
683
    JSArray* thisObject = jsCast<JSArray*>(object);
684
    if (propertyName == exec->propertyNames().length) {
685
        descriptor.setDescriptor(jsNumber(thisObject->length()), DontDelete | DontEnum);
686 687
        return true;
    }
688

689
    ArrayStorage* storage = thisObject->m_storage;
690 691
    
    bool isArrayIndex;
692
    unsigned i = propertyName.toArrayIndex(isArrayIndex);
693
    if (isArrayIndex) {
694
        if (i >= storage->m_length)
695
            return false;
696
        if (i < thisObject->m_vectorLength) {
697
            WriteBarrier<Unknown>& value = storage->m_vector[i];
698
            if (value) {
699
                descriptor.setDescriptor(value.get(), 0);
700 701
                return true;
            }
702
        } else if (SparseArrayValueMap* map = thisObject->m_sparseValueMap) {
703 704
            SparseArrayValueMap::iterator it = map->find(i);
            if (it != map->notFound()) {
705
                it->second.get(descriptor);
706
                return true;
707 708 709
            }
        }
    }
710
    return JSObject::getOwnPropertyDescriptor(thisObject, exec, propertyName, descriptor);
711 712
}

713 714 715
// ECMA 15.4.5.1
void JSArray::put(JSCell* cell, ExecState* exec, const Identifier& propertyName, JSValue value, PutPropertySlot& slot)
{
716
    JSArray* thisObject = jsCast<JSArray*>(cell);
darin's avatar
darin committed
717
    bool isArrayIndex;
718
    unsigned i = propertyName.toArrayIndex(isArrayIndex);
darin's avatar
darin committed
719
    if (isArrayIndex) {
720
        putByIndex(thisObject, exec, i, value);
darin's avatar
darin committed
721 722 723 724
        return;
    }

    if (propertyName == exec->propertyNames().length) {
weinig@apple.com's avatar
weinig@apple.com committed
725 726
        unsigned newLength = value.toUInt32(exec);
        if (value.toNumber(exec) != static_cast<double>(newLength)) {
727
            throwError(exec, createRangeError(exec, "Invalid array length"));
darin's avatar
darin committed
728 729
            return;
        }
730
        thisObject->setLength(exec, newLength, slot.isStrictMode());
darin's avatar
darin committed
731 732 733
        return;
    }

734
    JSObject::put(thisObject, exec, propertyName, value, slot);
darin's avatar
darin committed
735 736
}

737
void JSArray::putByIndex(JSCell* cell, ExecState* exec, unsigned i, JSValue value)
738
{
739
    JSArray* thisObject = jsCast<JSArray*>(cell);
740 741 742
    thisObject->checkConsistency();

    ArrayStorage* storage = thisObject->m_storage;
743

744
    // Fast case - store to the vector.
745
    if (i < thisObject->m_vectorLength) {
746
        WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
747 748 749 750 751 752 753 754 755 756
        unsigned length = storage->m_length;

        // Update m_length & m_numValuesInVector as necessary.
        if (i >= length) {
            length = i + 1;
            storage->m_length = length;
            ++storage->m_numValuesInVector;
        } else if (!valueSlot)
            ++storage->m_numValuesInVector;

757 758
        valueSlot.set(exec->globalData(), thisObject, value);
        thisObject->checkConsistency();
darin's avatar
darin committed
759 760 761
        return;
    }

762 763 764 765 766 767 768 769
    // Handle 2^32-1 - this is not an array index (see ES5.1 15.4), and is treated as a regular property.
    if (UNLIKELY(i > MAX_ARRAY_INDEX)) {
        PutPropertySlot slot;
        thisObject->methodTable()->put(thisObject, exec, Identifier::from(exec, i), value, slot);
        return;
    }

    // For all other cases, call putByIndexBeyondVectorLength.
770
    thisObject->putByIndexBeyondVectorLength(exec, i, value);
771
    thisObject->checkConsistency();
772 773
}

774
NEVER_INLINE void JSArray::putByIndexBeyondVectorLength(ExecState* exec, unsigned i, JSValue value)
775
{
776 777
    JSGlobalData& globalData = exec->globalData();

778
    // i should be a valid array index that is outside of the current vector.
779
    ASSERT(i >= m_vectorLength);
780
    ASSERT(i <= MAX_ARRAY_INDEX);
781

782
    ArrayStorage* storage = m_storage;
783
    SparseArrayValueMap* map = m_sparseValueMap;
ap@webkit.org's avatar
ap@webkit.org committed
784

785 786
    // First, handle cases where we don't currently have a sparse map.
    if (LIKELY(!map)) {
787 788 789 790
        // Update m_length if necessary.
        if (i >= storage->m_length)
            storage->m_length = i + 1;

791
        // Check that it is sensible to still be using a vector, and then try to grow the vector.
792
        if (LIKELY((isDenseEnoughForVector(i, storage->m_numValuesInVector)) && increaseVectorLength(globalData, i + 1))) {
793
            // success! - reread m_storage since it has likely been reallocated, and store to the vector.
794
            storage = m_storage;
795
            storage->m_vector[i].set(globalData, this, value);
796
            ++storage->m_numValuesInVector;
797
            return;
darin's avatar
darin committed
798
        }
799
        // We don't want to, or can't use a vector to hold this property - allocate a sparse map & add the value.
800 801
        allocateSparseMap(exec->globalData());
        map = m_sparseValueMap;
802
        map->put(exec, this, i, value);
803
        return;
darin's avatar
darin committed
804 805
    }

806 807 808 809 810 811 812 813 814 815 816 817
    // Update m_length if necessary.
    unsigned length = storage->m_length;
    if (i >= length) {
        // Prohibit growing the array if length is not writable.
        if (map->lengthIsReadOnly()) {
            // FIXME: should throw in strict mode.
            return;
        }
        length = i + 1;
        storage->m_length = length;
    }

818 819 820
    // We are currently using a map - check whether we still want to be doing so.
    // We will continue  to use a sparse map if SparseMode is set, a vector would be too sparse, or if allocation fails.
    unsigned numValuesInArray = storage->m_numValuesInVector + map->size();
821
    if (map->sparseMode() || !isDenseEnoughForVector(length, numValuesInArray) || !increaseVectorLength(exec->globalData(), length)) {
822
        map->put(exec, this, i, value);
barraclough@apple.com's avatar
barraclough@apple.com committed
823 824
        return;
    }
darin's avatar
darin committed
825

826
    // Reread m_storage afterincreaseVectorLength, update m_numValuesInVector.
827
    storage = m_storage;
828
    storage->m_numValuesInVector = numValuesInArray;
829

830 831 832 833
    // Copy all values from the map into the vector, and delete the map.
    WriteBarrier<Unknown>* vector = storage->m_vector;
    SparseArrayValueMap::const_iterator end = map->end();
    for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it)
834
        vector[it->first].set(globalData, this, it->second.getNonSparseMode());
835
    deallocateSparseMap();
836 837 838 839 840 841

    // Store the new property into the vector.
    WriteBarrier<Unknown>& valueSlot = vector[i];
    if (!valueSlot)
        ++storage->m_numValuesInVector;
    valueSlot.set(globalData, this, value);
darin's avatar
darin committed
842 843
}

844 845
bool JSArray::deleteProperty(JSCell* cell, ExecState* exec, const Identifier& propertyName)
{
846
    JSArray* thisObject = jsCast<JSArray*>(cell);
darin's avatar
darin committed
847
    bool isArrayIndex;
848
    unsigned i = propertyName.toArrayIndex(isArrayIndex);
darin's avatar
darin committed
849
    if (isArrayIndex)
850
        return thisObject->methodTable()->deletePropertyByIndex(thisObject, exec, i);
darin's avatar
darin committed
851 852 853 854

    if (propertyName == exec->propertyNames().length)
        return false;

855
    return JSObject::deleteProperty(thisObject, exec, propertyName);
darin's avatar
darin committed
856 857
}

858
bool JSArray::deletePropertyByIndex(JSCell* cell, ExecState* exec, unsigned i)
859
{
860
    JSArray* thisObject = jsCast<JSArray*>(cell);
861 862
    thisObject->checkConsistency();

863 864 865
    if (i > MAX_ARRAY_INDEX)
        return thisObject->methodTable()->deleteProperty(thisObject, exec, Identifier::from(exec, i));

866
    ArrayStorage* storage = thisObject->m_storage;
867
    
868
    if (i < thisObject->m_vectorLength) {
869
        WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
870 871 872
        if (valueSlot) {
            valueSlot.clear();
            --storage->m_numValuesInVector;
873
        }
874
    } else if (SparseArrayValueMap* map = thisObject->m_sparseValueMap) {
875 876
        SparseArrayValueMap::iterator it = map->find(i);
        if (it != map->notFound()) {
877 878
            if (it->second.attributes & DontDelete)
                return false;
879
            map->remove(it);
darin's avatar
darin committed
880 881 882
        }
    }

883
    thisObject->checkConsistency();
884 885
    return true;
}
886

887 888
static int compareKeysForQSort(const void* a, const void* b)
{
889 890
    unsigned da = *static_cast<const unsigned*>(a);
    unsigned db = *static_cast<const unsigned*>(b);
891
    return (da > db) - (da < db);
darin's avatar
darin committed
892 893
}

894
void JSArray::getOwnPropertyNames(JSObject* object, ExecState* exec, PropertyNameArray& propertyNames, EnumerationMode mode)
darin's avatar
darin committed
895
{
896
    JSArray* thisObject = jsCast<JSArray*>(object);
darin's avatar
darin committed
897
    // FIXME: Filling PropertyNameArray with an identifier for every integer
898 899
    // is incredibly inefficient for large arrays. We need a different approach,
    // which almost certainly means a different structure for PropertyNameArray.
darin's avatar
darin committed
900

901
    ArrayStorage* storage = thisObject->m_storage;
902
    
903
    unsigned usedVectorLength = min(storage->m_length, thisObject->m_vectorLength);
darin's avatar
darin committed
904
    for (unsigned i = 0; i < usedVectorLength; ++i) {
905
        if (storage->m_vector[i])
ap@webkit.org's avatar
ap@webkit.org committed
906
            propertyNames.add(Identifier::from(exec, i));
darin's avatar
darin committed
907 908
    }

909
    if (SparseArrayValueMap* map = thisObject->m_sparseValueMap) {
910
        Vector<unsigned> keys;
911 912
        keys.reserveCapacity(map->size());
        
913
        SparseArrayValueMap::const_iterator end = map->end();
914 915
        for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it) {
            if (mode == IncludeDontEnumProperties || !(it->second.attributes & DontEnum))
916
                keys.append(static_cast<unsigned>(it->first));
917 918
        }

919
        qsort(keys.begin(), keys.size(), sizeof(unsigned), compareKeysForQSort);
920
        for (unsigned i = 0; i < keys.size(); ++i)
921
            propertyNames.add(Identifier::from(exec, keys[i]));
darin's avatar
darin committed
922
    }
923

924 925 926
    if (mode == IncludeDontEnumProperties)
        propertyNames.add(exec->propertyNames().length);

927
    JSObject::getOwnPropertyNames(thisObject, exec, propertyNames, mode);
darin's avatar
darin committed
928 929
}

930 931 932 933 934
ALWAYS_INLINE unsigned JSArray::getNewVectorLength(unsigned desiredLength)
{
    ASSERT(desiredLength <= MAX_STORAGE_VECTOR_LENGTH);

    unsigned increasedLength;
935
    unsigned maxInitLength = min(m_storage->m_length, 100000U);
936

937 938
    if (desiredLength < maxInitLength)
        increasedLength = maxInitLength;
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
    else if (!m_vectorLength)
        increasedLength = max(desiredLength, lastArraySize);
    else {
        // Mathematically equivalent to:
        //   increasedLength = (newLength * 3 + 1) / 2;
        // or:
        //   increasedLength = (unsigned)ceil(newLength * 1.5));
        // This form is not prone to internal overflow.
        increasedLength = desiredLength + (desiredLength >> 1) + (desiredLength & 1);
    }

    ASSERT(increasedLength >= desiredLength);

    lastArraySize = min(increasedLength, FIRST_VECTOR_GROW);

    return min(increasedLength, MAX_STORAGE_VECTOR_LENGTH);
}

957
bool JSArray::increaseVectorLength(JSGlobalData& globalData, unsigned newLength)
darin's avatar
darin committed
958
{
ap@webkit.org's avatar
ap@webkit.org committed
959 960
    // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
    // to the vector. Callers have to account for that, because they can do it more efficiently.
961 962
    if (newLength > MAX_STORAGE_VECTOR_LENGTH)
        return false;
ap@webkit.org's avatar
ap@webkit.org committed
963

964
    ArrayStorage* storage = m_storage;
darin's avatar
darin committed
965

966
    unsigned vectorLength = m_vectorLength;
darin's avatar
darin committed
967
    ASSERT(newLength > vectorLength);
968
    unsigned newVectorLength = getNewVectorLength(newLength);
darin's avatar
darin committed
969

970 971
    // Fast case - there is no precapacity. In these cases a realloc makes sense.
    if (LIKELY(!m_indexBias)) {
972 973
        void* newStorage = storage->m_allocBase;
        if (!globalData.heap.tryReallocateStorage(&newStorage, storageSize(vectorLength), storageSize(newVectorLength)))
974
            return false;
975

976 977 978
        storage = m_storage = reinterpret_cast_ptr<ArrayStorage*>(static_cast<char*>(newStorage));
        m_storage->m_allocBase = newStorage;
        ASSERT(m_storage->m_allocBase);
979

980 981 982 983 984 985 986 987 988 989 990 991 992
        WriteBarrier<Unknown>* vector = storage->m_vector;
        for (unsigned i = vectorLength; i < newVectorLength; ++i)
            vector[i].clear();

        m_vectorLength = newVectorLength;
        
        return true;
    }

    // Remove some, but not all of the precapacity. Atomic decay, & capped to not overflow array length.
    unsigned newIndexBias = min(m_indexBias >> 1, MAX_STORAGE_VECTOR_LENGTH - newVectorLength);
    // Calculate new stoarge capcity, allowing room for the pre-capacity.
    unsigned newStorageCapacity = newVectorLength + newIndexBias;
993 994
    void* newAllocBase = 0;
    if (!globalData.heap.tryAllocateStorage(storageSize(newStorageCapacity), &newAllocBase))    
995 996 997
        return false;
    // The sum of m_vectorLength and m_indexBias will never exceed MAX_STORAGE_VECTOR_LENGTH.
    ASSERT(m_vectorLength <= MAX_STORAGE_VECTOR_LENGTH && (MAX_STORAGE_VECTOR_LENGTH - m_vectorLength) >= m_indexBias);
ap@webkit.org's avatar
ap@webkit.org committed
998

999
    m_vectorLength = newVectorLength;
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    m_indexBias = newIndexBias;
    m_storage = reinterpret_cast_ptr<ArrayStorage*>(reinterpret_cast<WriteBarrier<Unknown>*>(newAllocBase) + m_indexBias);

    // Copy the ArrayStorage header & current contents of the vector, clear the new post-capacity.
    memmove(m_storage, storage, storageSize(vectorLength));
    for (unsigned i = vectorLength; i < m_vectorLength; ++i)
        m_storage->m_vector[i].clear();

    // Free the old allocation, update m_allocBase.
    m_storage->m_allocBase = newAllocBase;
darin's avatar
darin committed
1010

1011 1012
    return true;
}
darin's avatar
darin committed
1013

1014
// This method makes room in the vector, but leaves the new space uncleared.
1015
bool JSArray::unshiftCountSlowCase(JSGlobalData& globalData, unsigned count)
1016
{
1017 1018
    // If not, we should have handled this on the fast path.
    ASSERT(count > m_indexBias);
1019

1020
    ArrayStorage* storage = m_storage;
1021

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
    // Step 1:
    // Gather 4 key metrics:
    //  * usedVectorLength - how many entries are currently in the vector (conservative estimate - fewer may be in use in sparse vectors).
    //  * requiredVectorLength - how many entries are will there be in the vector, after allocating space for 'count' more.
    //  * currentCapacity - what is the current size of the vector, including any pre-capacity.
    //  * desiredCapacity - how large should we like to grow the vector to - based on 2x requiredVectorLength.

    unsigned length = storage->m_length;
    unsigned usedVectorLength = min(m_vectorLength, length);
    ASSERT(usedVectorLength <= MAX_STORAGE_VECTOR_LENGTH);
    // Check that required vector length is possible, in an overflow-safe fashion.
    if (count > MAX_STORAGE_VECTOR_LENGTH - usedVectorLength)
1034
        return false;
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    unsigned requiredVectorLength = usedVectorLength + count;
    ASSERT(requiredVectorLength <= MAX_STORAGE_VECTOR_LENGTH);
    // The sum of m_vectorLength and m_indexBias will never exceed MAX_STORAGE_VECTOR_LENGTH.
    ASSERT(m_vectorLength <= MAX_STORAGE_VECTOR_LENGTH && (MAX_STORAGE_VECTOR_LENGTH - m_vectorLength) >= m_indexBias);
    unsigned currentCapacity = m_vectorLength + m_indexBias;
    // The calculation of desiredCapacity won't overflow, due to the range of MAX_STORAGE_VECTOR_LENGTH.
    unsigned desiredCapacity = min(MAX_STORAGE_VECTOR_LENGTH, max(BASE_VECTOR_LEN, requiredVectorLength) << 1);

    // Step 2:
    // We're either going to choose to allocate a new ArrayStorage, or we're going to reuse the existing on.

1046
    void* newAllocBase = 0;
1047 1048 1049 1050 1051 1052
    unsigned newStorageCapacity;
    // If the current storage array is sufficiently large (but not too large!) then just keep using it.
    if (currentCapacity > desiredCapacity && isDenseEnoughForVector(currentCapacity, requiredVectorLength)) {
        newAllocBase = storage->m_allocBase;
        newStorageCapacity = currentCapacity;
    } else {
1053
        if (!globalData.heap.tryAllocateStorage(storageSize(desiredCapacity), &newAllocBase))
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
            return false;
        newStorageCapacity = desiredCapacity;
    }

    // Step 3:
    // Work out where we're going to move things to.

    // Determine how much of the vector to use as pre-capacity, and how much as post-capacity.
    // If the vector had no free post-capacity (length >= m_vectorLength), don't give it any.
    // If it did, we calculate the amount that will remain based on an atomic decay - leave the
    // vector with half the post-capacity it had previously.
    unsigned postCapacity = 0;
    if (length < m_vectorLength) {
        // Atomic decay, + the post-capacity cannot be greater than what is available.
        postCapacity = min((m_vectorLength - length) >> 1, newStorageCapacity - requiredVectorLength);
        // If we're moving contents within the same allocation, the post-capacity is being reduced.
        ASSERT(newAllocBase != storage->m_allocBase || postCapacity < m_vectorLength - length);
    }

    m_vectorLength = requiredVectorLength + postCapacity;
    m_indexBias = newStorageCapacity - m_vectorLength;
    m_storage = reinterpret_cast_ptr<ArrayStorage*>(reinterpret_cast<WriteBarrier<Unknown>*>(newAllocBase) + m_indexBias);

    // Step 4:
    // Copy array data / header into their new locations, clear post-capacity & free any old allocation.

    // If this is being moved within the existing buffer of memory, we are always shifting data
    // to the right (since count > m_indexBias). As such this memmove cannot trample the header.
    memmove(m_storage->m_vector + count, storage->m_vector, sizeof(WriteBarrier<Unknown>) * usedVectorLength);
    memmove(m_storage, storage, storageSize(0));

    // Are we copying into a new allocation?
    if (newAllocBase != m_storage->m_allocBase) {
        // Free the old allocation, update m_allocBase.
        m_storage->m_allocBase = newAllocBase;

        // We need to clear any entries in the vector beyond length. We only need to
        // do this if this was a new allocation, because if we're using an existing
        // allocation the post-capacity will already be cleared, and in an existing
        // allocation we can only beshrinking the amount of post capacity.
        for (unsigned i = requiredVectorLength; i < m_vectorLength; ++i)
            m_storage->m_vector[i].clear();
    }
1097

ap@webkit.org's avatar
ap@webkit.org committed
1098
    return true;
darin's avatar
darin committed
1099 1100
}

1101
bool JSArray::setLength(ExecState* exec, unsigned newLength, bool throwException)
darin's avatar
darin committed
1102
{
1103 1104
    checkConsistency();

1105
    ArrayStorage* storage = m_storage;
1106
    unsigned length = storage->m_length;
darin's avatar
darin committed
1107

1108
    // If the length is read only then we enter sparse mode, so should enter the following 'if'.
1109
    ASSERT(isLengthWritable() || m_sparseValueMap);
1110

1111
    if (SparseArrayValueMap* map = m_sparseValueMap) {
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
        // Fail if the length is not writable.
        if (map->lengthIsReadOnly())
            return reject(exec, throwException, StrictModeReadonlyPropertyWriteError);

        if (newLength < length) {
            // Copy any keys we might be interested in into a vector.
            Vector<unsigned> keys;
            keys.reserveCapacity(min(map->size(), static_cast<size_t>(length - newLength)));
            SparseArrayValueMap::const_iterator end = map->end();
            for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it) {
1122
                unsigned index = static_cast<unsigned>(it->first);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
                if (index < length && index >= newLength)
                    keys.append(index);
            }

            // Check if the array is in sparse mode. If so there may be non-configurable
            // properties, so we have to perform deletion with caution, if not we can
            // delete values in any order.
            if (map->sparseMode()) {
                qsort(keys.begin(), keys.size(), sizeof(unsigned), compareKeysForQSort);
                unsigned i = keys.size();
                while (i) {
                    unsigned index = keys[--i];
                    SparseArrayValueMap::iterator it = map->find(index);
                    ASSERT(it != map->notFound());
                    if (it->second.attribut