SymbolTable.h 10.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
//
// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//

#ifndef _SYMBOL_TABLE_INCLUDED_
#define _SYMBOL_TABLE_INCLUDED_

//
// Symbol table for parsing.  Has these design characteristics:
//
// * Same symbol table can be used to compile many shaders, to preserve
//   effort of creating and loading with the large numbers of built-in
//   symbols.
//
// * Name mangling will be used to give each function a unique name
//   so that symbol table lookups are never ambiguous.  This allows
//   a simpler symbol table structure.
//
// * Pushing and popping of scope, so symbol table will really be a stack 
//   of symbol tables.  Searched from the top, with new inserts going into
//   the top.
//
// * Constants:  Compile time constant symbols will keep their values
//   in the symbol table.  The parser can substitute constants at parse
//   time, including doing constant folding and constant propagation.
//
// * No temporaries:  Temporaries made from operations (+, --, .xy, etc.)
//   are tracked in the intermediate representation, not the symbol table.
//

#include <assert.h>
34

35
#include "compiler/InfoSink.h"
36
#include "compiler/intermediate.h"
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

//
// Symbol base class.  (Can build functions or variables out of these...)
//
class TSymbol {    
public:
    POOL_ALLOCATOR_NEW_DELETE(GlobalPoolAllocator)
    TSymbol(const TString *n) :  name(n) { }
    virtual ~TSymbol() { /* don't delete name, it's from the pool */ }
    const TString& getName() const { return *name; }
    virtual const TString& getMangledName() const { return getName(); }
    virtual bool isFunction() const { return false; }
    virtual bool isVariable() const { return false; }
    void setUniqueId(int id) { uniqueId = id; }
    int getUniqueId() const { return uniqueId; }
    virtual void dump(TInfoSink &infoSink) const = 0;	
    TSymbol(const TSymbol&);
    virtual TSymbol* clone(TStructureMap& remapper) = 0;

protected:
    const TString *name;
    unsigned int uniqueId;      // For real comparing during code generation
};

//
// Variable class, meaning a symbol that's not a function.
// 
// There could be a separate class heirarchy for Constant variables;
// Only one of int, bool, or float, (or none) is correct for
// any particular use, but it's easy to do this way, and doesn't
// seem worth having separate classes, and "getConst" can't simply return
// different values for different types polymorphically, so this is 
// just simple and pragmatic.
//
class TVariable : public TSymbol {
public:
    TVariable(const TString *name, const TType& t, bool uT = false ) : TSymbol(name), type(t), userType(uT), unionArray(0), arrayInformationType(0) { }
    virtual ~TVariable() { }
    virtual bool isVariable() const { return true; }    
    TType& getType() { return type; }    
    const TType& getType() const { return type; }
    bool isUserType() const { return userType; }
79
    void setQualifier(TQualifier qualifier) { type.setQualifier(qualifier); }
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
    void updateArrayInformationType(TType *t) { arrayInformationType = t; }
    TType* getArrayInformationType() { return arrayInformationType; }

    virtual void dump(TInfoSink &infoSink) const;

    ConstantUnion* getConstPointer()
    { 
        if (!unionArray)
            unionArray = new ConstantUnion[type.getObjectSize()];

        return unionArray;
    }

    ConstantUnion* getConstPointer() const { return unionArray; }

    void shareConstPointer( ConstantUnion *constArray)
    {
        delete unionArray;
        unionArray = constArray;  
    }
    TVariable(const TVariable&, TStructureMap& remapper); // copy constructor
    virtual TVariable* clone(TStructureMap& remapper);

protected:
    TType type;
    bool userType;
    // we are assuming that Pool Allocator will free the memory allocated to unionArray
    // when this object is destroyed
    ConstantUnion *unionArray;
    TType *arrayInformationType;  // this is used for updating maxArraySize in all the references to a given symbol
};

//
// The function sub-class of symbols and the parser will need to
// share this definition of a function parameter.
//
struct TParameter {
    TString *name;
    TType* type;
    void copyParam(const TParameter& param, TStructureMap& remapper)
    {
        name = NewPoolTString(param.name->c_str());
        type = param.type->clone(remapper);
    }
};

//
// The function sub-class of a symbol.  
//
class TFunction : public TSymbol {
public:
    TFunction(TOperator o) :
        TSymbol(0),
        returnType(TType(EbtVoid, EbpUndefined)),
        op(o),
        defined(false) { }
    TFunction(const TString *name, TType& retType, TOperator tOp = EOpNull) : 
        TSymbol(name), 
        returnType(retType),
        mangledName(TFunction::mangleName(*name)),
        op(tOp),
        defined(false) { }
    virtual ~TFunction();
    virtual bool isFunction() const { return true; }    

    static TString mangleName(const TString& name) { return name + '('; }
    static TString unmangleName(const TString& mangledName)
    {
        return TString(mangledName.c_str(), mangledName.find_first_of('('));
    }

    void addParameter(TParameter& p) 
    { 
        parameters.push_back(p);
        mangledName = mangledName + p.type->getMangledName();
    }

    const TString& getMangledName() const { return mangledName; }
    const TType& getReturnType() const { return returnType; }
    void relateToOperator(TOperator o) { op = o; }
    TOperator getBuiltInOp() const { return op; }
    void setDefined() { defined = true; }
    bool isDefined() { return defined; }

    int getParamCount() const { return static_cast<int>(parameters.size()); }    
    TParameter& operator [](int i)       { return parameters[i]; }
    const TParameter& operator [](int i) const { return parameters[i]; }

    virtual void dump(TInfoSink &infoSink) const;
    TFunction(const TFunction&, TStructureMap& remapper);
    virtual TFunction* clone(TStructureMap& remapper);

protected:
    typedef TVector<TParameter> TParamList;
    TParamList parameters;
    TType returnType;
    TString mangledName;
    TOperator op;
    bool defined;
};


class TSymbolTableLevel {
public:
    typedef TMap<TString, TSymbol*> tLevel;
    typedef tLevel::const_iterator const_iterator;
    typedef const tLevel::value_type tLevelPair;
    typedef std::pair<tLevel::iterator, bool> tInsertResult;

    POOL_ALLOCATOR_NEW_DELETE(GlobalPoolAllocator)
    TSymbolTableLevel() { }
    ~TSymbolTableLevel();

    bool insert(TSymbol& symbol) 
    {
        //
        // returning true means symbol was added to the table
        //
        tInsertResult result;
        result = level.insert(tLevelPair(symbol.getMangledName(), &symbol));

        return result.second;
    }

    TSymbol* find(const TString& name) const
    {
        tLevel::const_iterator it = level.find(name);
        if (it == level.end())
            return 0;
        else
            return (*it).second;
    }

    const_iterator begin() const
    {
        return level.begin();
    }

    const_iterator end() const
    {
        return level.end();
    }

    void relateToOperator(const char* name, TOperator op);
    void dump(TInfoSink &infoSink) const;
    TSymbolTableLevel* clone(TStructureMap& remapper);

protected:
    tLevel level;
};

class TSymbolTable {
public:
    TSymbolTable() : uniqueId(0)
    {
        //
        // The symbol table cannot be used until push() is called, but
        // the lack of an initial call to push() can be used to detect
        // that the symbol table has not been preloaded with built-ins.
        //
    }

    ~TSymbolTable()
    {
        // level 0 is always built In symbols, so we never pop that out
        while (table.size() > 1)
            pop();
    }

    //
    // When the symbol table is initialized with the built-ins, there should
    // 'push' calls, so that built-ins are at level 0 and the shader
    // globals are at level 1.
    //
    bool isEmpty() { return table.size() == 0; }
255
256
    bool atBuiltInLevel() { return table.size() == 1; }
    bool atGlobalLevel() { return table.size() <= 2; }
257
    void push()
258
    {
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        table.push_back(new TSymbolTableLevel);
        precisionStack.push_back( PrecisionStackLevel() );
    }

    void pop()
    { 
        delete table[currentLevel()]; 
        table.pop_back(); 
        precisionStack.pop_back();
    }

    bool insert(TSymbol& symbol)
    {
        symbol.setUniqueId(++uniqueId);
        return table[currentLevel()]->insert(symbol);
    }

    TSymbol* find(const TString& name, bool* builtIn = 0, bool *sameScope = 0) 
    {
        int level = currentLevel();
        TSymbol* symbol;
        do {
            symbol = table[level]->find(name);
            --level;
        } while (symbol == 0 && level >= 0);
        level++;
        if (builtIn)
            *builtIn = level == 0;
        if (sameScope)
            *sameScope = level == currentLevel();
        return symbol;
    }

292
    TSymbolTableLevel* getGlobalLevel() { assert(table.size() >= 2); return table[1]; }
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    void relateToOperator(const char* name, TOperator op) { table[0]->relateToOperator(name, op); }
    int getMaxSymbolId() { return uniqueId; }
    void dump(TInfoSink &infoSink) const;
    void copyTable(const TSymbolTable& copyOf);

    void setDefaultPrecision( TBasicType type, TPrecision prec ){
        if( type != EbtFloat && type != EbtInt ) return; // Only set default precision for int/float
        int indexOfLastElement = static_cast<int>(precisionStack.size()) - 1;
        precisionStack[indexOfLastElement][type] = prec; // Uses map operator [], overwrites the current value
    }

    // Searches down the precisionStack for a precision qualifier for the specified TBasicType
    TPrecision getDefaultPrecision( TBasicType type){
        if( type != EbtFloat && type != EbtInt ) return EbpUndefined;
        int level = static_cast<int>(precisionStack.size()) - 1;
        assert( level >= 0); // Just to be safe. Should not happen.
        PrecisionStackLevel::iterator it;
        TPrecision prec = EbpUndefined; // If we dont find anything we return this. Should we error check this?
        while( level >= 0 ){
            it = precisionStack[level].find( type );
            if( it != precisionStack[level].end() ){
                prec = (*it).second;
                break;
            }
            level--;
        }
        return prec;
    }

protected:    
    int currentLevel() const { return static_cast<int>(table.size()) - 1; }

    std::vector<TSymbolTableLevel*> table;
    typedef std::map< TBasicType, TPrecision > PrecisionStackLevel;
    std::vector< PrecisionStackLevel > precisionStack;
    int uniqueId;     // for unique identification in code generation
};

#endif // _SYMBOL_TABLE_INCLUDED_