JSArray.cpp 71.5 KB
Newer Older
darin's avatar
darin committed
1 2
/*
 *  Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
3
 *  Copyright (C) 2003, 2007, 2008, 2009 Apple Inc. All rights reserved.
darin's avatar
darin committed
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 *  Copyright (C) 2003 Peter Kelly (pmk@post.com)
 *  Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include "config.h"
darin@apple.com's avatar
darin@apple.com committed
24
#include "JSArray.h"
darin's avatar
darin committed
25

darin@apple.com's avatar
darin@apple.com committed
26
#include "ArrayPrototype.h"
27 28
#include "BumpSpace.h"
#include "BumpSpaceInlineMethods.h"
29
#include "CachedCall.h"
30
#include "Error.h"
31
#include "Executable.h"
32
#include "GetterSetter.h"
darin's avatar
darin committed
33
#include "PropertyNameArray.h"
ap@webkit.org's avatar
ap@webkit.org committed
34
#include <wtf/AVLTree.h>
35
#include <wtf/Assertions.h>
36
#include <wtf/OwnPtr.h>
37
#include <Operations.h>
darin's avatar
darin committed
38

39
using namespace std;
ap@webkit.org's avatar
ap@webkit.org committed
40
using namespace WTF;
bdash's avatar
bdash committed
41

42
namespace JSC {
darin's avatar
darin committed
43

ggaren@apple.com's avatar
ggaren@apple.com committed
44 45
ASSERT_CLASS_FITS_IN_CELL(JSArray);

barraclough@apple.com's avatar
barraclough@apple.com committed
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
// Overview of JSArray
//
// Properties of JSArray objects may be stored in one of three locations:
//   * The regular JSObject property map.
//   * A storage vector.
//   * A sparse map of array entries.
//
// Properties with non-numeric identifiers, with identifiers that are not representable
// as an unsigned integer, or where the value is greater than  MAX_ARRAY_INDEX
// (specifically, this is only one property - the value 0xFFFFFFFFU as an unsigned 32-bit
// integer) are not considered array indices and will be stored in the JSObject property map.
//
// All properties with a numeric identifer, representable as an unsigned integer i,
// where (i <= MAX_ARRAY_INDEX), are an array index and will be stored in either the
// storage vector or the sparse map.  An array index i will be handled in the following
// fashion:
//
63 64
//   * Where (i < MIN_SPARSE_ARRAY_INDEX) the value will be stored in the storage vector,
//     unless the array is in SparseMode in which case all properties go into the map.
barraclough@apple.com's avatar
barraclough@apple.com committed
65 66 67 68 69 70 71 72 73
//   * Where (MIN_SPARSE_ARRAY_INDEX <= i <= MAX_STORAGE_VECTOR_INDEX) the value will either
//     be stored in the storage vector or in the sparse array, depending on the density of
//     data that would be stored in the vector (a vector being used where at least
//     (1 / minDensityMultiplier) of the entries would be populated).
//   * Where (MAX_STORAGE_VECTOR_INDEX < i <= MAX_ARRAY_INDEX) the value will always be stored
//     in the sparse array.

// The definition of MAX_STORAGE_VECTOR_LENGTH is dependant on the definition storageSize
// function below - the MAX_STORAGE_VECTOR_LENGTH limit is defined such that the storage
74 75 76
// size calculation cannot overflow.  (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>)) +
// (vectorLength * sizeof(WriteBarrier<Unknown>)) must be <= 0xFFFFFFFFU (which is maximum value of size_t).
#define MAX_STORAGE_VECTOR_LENGTH static_cast<unsigned>((0xFFFFFFFFU - (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>))) / sizeof(WriteBarrier<Unknown>))
barraclough@apple.com's avatar
barraclough@apple.com committed
77 78 79 80 81

// These values have to be macros to be used in max() and min() without introducing
// a PIC branch in Mach-O binaries, see <rdar://problem/5971391>.
#define MIN_SPARSE_ARRAY_INDEX 10000U
#define MAX_STORAGE_VECTOR_INDEX (MAX_STORAGE_VECTOR_LENGTH - 1)
82
// 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer.
barraclough@apple.com's avatar
barraclough@apple.com committed
83
#define MAX_ARRAY_INDEX 0xFFFFFFFEU
darin's avatar
darin committed
84

85 86 87 88 89 90 91 92
// The value BASE_VECTOR_LEN is the maximum number of vector elements we'll allocate
// for an array that was created with a sepcified length (e.g. a = new Array(123))
#define BASE_VECTOR_LEN 4U
    
// The upper bound to the size we'll grow a zero length array when the first element
// is added.
#define FIRST_VECTOR_GROW 4U

darin's avatar
darin committed
93
// Our policy for when to use a vector and when to use a sparse map.
barraclough@apple.com's avatar
barraclough@apple.com committed
94 95
// For all array indices under MIN_SPARSE_ARRAY_INDEX, we always use a vector.
// When indices greater than MIN_SPARSE_ARRAY_INDEX are involved, we use a vector
darin's avatar
darin committed
96 97 98
// as long as it is 1/8 full. If more sparse than that, we use a map.
static const unsigned minDensityMultiplier = 8;

99
const ClassInfo JSArray::s_info = {"Array", &JSNonFinalObject::s_info, 0, 0, CREATE_METHOD_TABLE(JSArray)};
darin's avatar
darin committed
100

101 102 103 104 105
// We keep track of the size of the last array after it was grown.  We use this
// as a simple heuristic for as the value to grow the next array from size 0.
// This value is capped by the constant FIRST_VECTOR_GROW defined above.
static unsigned lastArraySize = 0;

darin's avatar
darin committed
106 107
static inline size_t storageSize(unsigned vectorLength)
{
barraclough@apple.com's avatar
barraclough@apple.com committed
108 109 110 111
    ASSERT(vectorLength <= MAX_STORAGE_VECTOR_LENGTH);

    // MAX_STORAGE_VECTOR_LENGTH is defined such that provided (vectorLength <= MAX_STORAGE_VECTOR_LENGTH)
    // - as asserted above - the following calculation cannot overflow.
112
    size_t size = (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>)) + (vectorLength * sizeof(WriteBarrier<Unknown>));
barraclough@apple.com's avatar
barraclough@apple.com committed
113 114
    // Assertion to detect integer overflow in previous calculation (should not be possible, provided that
    // MAX_STORAGE_VECTOR_LENGTH is correctly defined).
115
    ASSERT(((size - (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>))) / sizeof(WriteBarrier<Unknown>) == vectorLength) && (size >= (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>))));
barraclough@apple.com's avatar
barraclough@apple.com committed
116 117

    return size;
darin's avatar
darin committed
118 119 120 121
}

static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues)
{
122
    return length <= MIN_SPARSE_ARRAY_INDEX || length / minDensityMultiplier <= numValues;
darin's avatar
darin committed
123 124
}

125 126
#if !CHECK_ARRAY_CONSISTENCY

darin@apple.com's avatar
darin@apple.com committed
127
inline void JSArray::checkConsistency(ConsistencyCheckType)
128 129 130 131 132
{
}

#endif

133 134
JSArray::JSArray(JSGlobalData& globalData, Structure* structure)
    : JSNonFinalObject(globalData, structure)
135
    , m_indexBias(0)
136
    , m_storage(0)
137 138
    , m_sparseValueMap(0)
    , m_subclassData(0)
weinig@apple.com's avatar
weinig@apple.com committed
139
{
140 141
}

142
void JSArray::finishCreation(JSGlobalData& globalData, unsigned initialLength)
143 144
{
    Base::finishCreation(globalData);
145 146
    ASSERT(inherits(&s_info));

147 148
    unsigned initialVectorLength = BASE_VECTOR_LEN;
    unsigned initialStorageSize = storageSize(initialVectorLength);
weinig@apple.com's avatar
weinig@apple.com committed
149

150 151 152 153 154
    void* newStorage = 0;
    if (!globalData.heap.tryAllocateStorage(initialStorageSize, &newStorage))
        CRASH();
    
    m_storage = static_cast<ArrayStorage*>(newStorage);
155
    m_storage->m_allocBase = m_storage;
156 157 158 159 160 161
    m_storage->m_length = initialLength;
    m_vectorLength = initialVectorLength;
    m_storage->m_numValuesInVector = 0;
#if CHECK_ARRAY_CONSISTENCY
    m_storage->m_inCompactInitialization = false;
#endif
weinig@apple.com's avatar
weinig@apple.com committed
162

163 164 165
    WriteBarrier<Unknown>* vector = m_storage->m_vector;
    for (size_t i = 0; i < initialVectorLength; ++i)
        vector[i].clear();
166

167
    checkConsistency();
weinig@apple.com's avatar
weinig@apple.com committed
168 169
}

170
JSArray* JSArray::tryFinishCreationUninitialized(JSGlobalData& globalData, unsigned initialLength)
darin's avatar
darin committed
171
{
172
    Base::finishCreation(globalData);
173 174
    ASSERT(inherits(&s_info));

175 176 177 178 179 180 181
    // Check for lengths larger than we can handle with a vector.
    if (initialLength > MAX_STORAGE_VECTOR_LENGTH)
        return 0;

    unsigned initialVectorLength = max(initialLength, BASE_VECTOR_LEN);
    unsigned initialStorageSize = storageSize(initialVectorLength);

182 183 184 185 186
    void* newStorage = 0;
    if (!globalData.heap.tryAllocateStorage(initialStorageSize, &newStorage))
        CRASH();
    
    m_storage = static_cast<ArrayStorage*>(newStorage);
187
    m_storage->m_allocBase = m_storage;
188 189 190
    m_storage->m_length = 0;
    m_vectorLength = initialVectorLength;
    m_storage->m_numValuesInVector = initialLength;
191

192
#if CHECK_ARRAY_CONSISTENCY
193
    m_storage->m_inCompactInitialization = true;
194
#endif
195

196 197 198 199 200
    WriteBarrier<Unknown>* vector = m_storage->m_vector;
    for (size_t i = initialLength; i < initialVectorLength; ++i)
        vector[i].clear();

    return this;
darin's avatar
darin committed
201 202
}

darin@apple.com's avatar
darin@apple.com committed
203
JSArray::~JSArray()
darin's avatar
darin committed
204
{
205
    ASSERT(jsCast<JSArray*>(this));
206
    checkConsistency(DestructorConsistencyCheck);
207
    delete m_sparseValueMap;
darin's avatar
darin committed
208 209
}

210 211 212 213 214
void JSArray::destroy(JSCell* cell)
{
    jsCast<JSArray*>(cell)->JSArray::~JSArray();
}

215
inline std::pair<SparseArrayValueMap::iterator, bool> SparseArrayValueMap::add(JSArray* array, unsigned i)
216
{
217 218 219 220 221 222 223 224
    SparseArrayEntry entry;
    std::pair<iterator, bool> result = m_map.add(i, entry);
    size_t capacity = m_map.capacity();
    if (capacity != m_reportedCapacity) {
        Heap::heap(array)->reportExtraMemoryCost((capacity - m_reportedCapacity) * (sizeof(unsigned) + sizeof(WriteBarrier<Unknown>)));
        m_reportedCapacity = capacity;
    }
    return result;
225 226
}

227
inline void SparseArrayValueMap::put(ExecState* exec, JSArray* array, unsigned i, JSValue value)
228
{
229 230
    SparseArrayEntry& entry = add(array, i).first->second;

231
    if (!(entry.attributes & Accessor)) {
232 233 234 235 236 237 238
        if (entry.attributes & ReadOnly) {
            // FIXME: should throw if being called from strict mode.
            // throwTypeError(exec, StrictModeReadonlyPropertyWriteError);
            return;
        }

        entry.set(exec->globalData(), array, value);
239
        return;
240
    }
241

242 243 244 245 246 247 248
    JSValue accessor = entry.Base::get();
    ASSERT(accessor.isGetterSetter());
    JSObject* setter = asGetterSetter(accessor)->setter();
    
    if (!setter) {
        throwTypeError(exec, "setting a property that has only a getter");
        return;
249
    }
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

    CallData callData;
    CallType callType = setter->methodTable()->getCallData(setter, callData);
    MarkedArgumentBuffer args;
    args.append(value);
    call(exec, setter, callType, callData, array, args);
}

inline void SparseArrayEntry::get(PropertySlot& slot) const
{
    JSValue value = Base::get();
    ASSERT(value);

    if (LIKELY(!value.isGetterSetter())) {
        slot.setValue(value);
        return;
    }

    JSObject* getter = asGetterSetter(value)->getter();
    if (!getter) {
        slot.setUndefined();
        return;
    }

    slot.setGetterSlot(getter);
}

inline void SparseArrayEntry::get(PropertyDescriptor& descriptor) const
{
    descriptor.setDescriptor(Base::get(), attributes);
}

inline JSValue SparseArrayEntry::get(ExecState* exec, JSArray* array) const
{
    JSValue result = Base::get();
    ASSERT(result);

    if (LIKELY(!result.isGetterSetter()))
        return result;

    JSObject* getter = asGetterSetter(result)->getter();
    if (!getter)
        return jsUndefined();

    CallData callData;
    CallType callType = getter->methodTable()->getCallData(getter, callData);
    return call(exec, getter, callType, callData, array, exec->emptyList());
}

inline JSValue SparseArrayEntry::getNonSparseMode() const
{
    ASSERT(!attributes);
    return Base::get();
303 304 305 306 307 308 309 310 311
}

inline void SparseArrayValueMap::visitChildren(SlotVisitor& visitor)
{
    iterator end = m_map.end();
    for (iterator it = m_map.begin(); it != end; ++it)
        visitor.append(&it->second);
}

312 313 314
void JSArray::enterSparseMode(JSGlobalData& globalData)
{
    ArrayStorage* storage = m_storage;
315
    SparseArrayValueMap* map = m_sparseValueMap;
316 317

    if (!map)
318
        map = m_sparseValueMap = new SparseArrayValueMap;
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

    if (map->sparseMode())
        return;

    map->setSparseMode();

    unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
    for (unsigned i = 0; i < usedVectorLength; ++i) {
        JSValue value = storage->m_vector[i].get();
        // This will always be a new entry in the map, so no need to check we can write,
        // and attributes are default so no need to set them.
        if (value)
            map->add(this, i).first->second.set(globalData, this, value);
    }

334 335 336 337 338
    void* newRawStorage = 0;
    if (!globalData.heap.tryAllocateStorage(storageSize(0), &newRawStorage))
        CRASH();
    
    ArrayStorage* newStorage = static_cast<ArrayStorage*>(newRawStorage);
339 340 341 342 343 344 345 346 347 348 349 350
    memcpy(newStorage, m_storage, storageSize(0));
    newStorage->m_allocBase = newStorage;
    m_storage = newStorage;
    m_indexBias = 0;
    m_vectorLength = 0;
}

void JSArray::putDescriptor(ExecState* exec, SparseArrayEntry* entryInMap, PropertyDescriptor& descriptor, PropertyDescriptor& oldDescriptor)
{
    if (descriptor.isDataDescriptor()) {
        if (descriptor.value())
            entryInMap->set(exec->globalData(), this, descriptor.value());
351 352
        else if (oldDescriptor.isAccessorDescriptor())
            entryInMap->set(exec->globalData(), this, jsUndefined());
353
        entryInMap->attributes = descriptor.attributesOverridingCurrent(oldDescriptor) & ~Accessor;
354 355 356 357 358
        return;
    }

    if (descriptor.isAccessorDescriptor()) {
        JSObject* getter = 0;
359 360 361 362
        if (descriptor.getterPresent())
            getter = descriptor.getterObject();
        else if (oldDescriptor.isAccessorDescriptor())
            getter = oldDescriptor.getterObject();
363
        JSObject* setter = 0;
364 365 366 367
        if (descriptor.setterPresent())
            setter = descriptor.setterObject();
        else if (oldDescriptor.isAccessorDescriptor())
            setter = oldDescriptor.setterObject();
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

        GetterSetter* accessor = GetterSetter::create(exec);
        if (getter)
            accessor->setGetter(exec->globalData(), getter);
        if (setter)
            accessor->setSetter(exec->globalData(), setter);

        entryInMap->set(exec->globalData(), this, accessor);
        entryInMap->attributes = descriptor.attributesOverridingCurrent(oldDescriptor) & ~DontDelete;
        return;
    }

    ASSERT(descriptor.isGenericDescriptor());
    entryInMap->attributes = descriptor.attributesOverridingCurrent(oldDescriptor);
}

static bool reject(ExecState* exec, bool throwException, const char* message)
{
    if (throwException)
        throwTypeError(exec, message);
    return false;
}

// Defined in ES5.1 8.12.9
bool JSArray::defineOwnNumericProperty(ExecState* exec, unsigned index, PropertyDescriptor& descriptor, bool throwException)
{
    ASSERT(index != 0xFFFFFFFF);

    if (!inSparseMode()) {
        // Fast case: we're putting a regular property to a regular array
        // FIXME: this will pessimistically assume that if attributes are missing then they'll default to false
        // – however if the property currently exists missing attributes will override from their current 'true'
        // state (i.e. defineOwnProperty could be used to set a value without needing to entering 'SparseMode').
        if (!descriptor.attributes()) {
            ASSERT(!descriptor.isAccessorDescriptor());
            putByIndex(this, exec, index, descriptor.value());
            return true;
        }

        enterSparseMode(exec->globalData());
    }

410
    SparseArrayValueMap* map = m_sparseValueMap;
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
    ASSERT(map);

    // 1. Let current be the result of calling the [[GetOwnProperty]] internal method of O with property name P.
    std::pair<SparseArrayValueMap::iterator, bool> result = map->add(this, index);
    SparseArrayEntry* entryInMap = &result.first->second;

    // 2. Let extensible be the value of the [[Extensible]] internal property of O.
    // 3. If current is undefined and extensible is false, then Reject.
    // 4. If current is undefined and extensible is true, then
    if (result.second) {
        if (!isExtensible()) {
            map->remove(result.first);
            return reject(exec, throwException, "Attempting to define property on object that is not extensible.");
        }

        // 4.a. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then create an own data property
        // named P of object O whose [[Value]], [[Writable]], [[Enumerable]] and [[Configurable]] attribute values
        // are described by Desc. If the value of an attribute field of Desc is absent, the attribute of the newly
        // created property is set to its default value.
        // 4.b. Else, Desc must be an accessor Property Descriptor so, create an own accessor property named P of
        // object O whose [[Get]], [[Set]], [[Enumerable]] and [[Configurable]] attribute values are described by
        // Desc. If the value of an attribute field of Desc is absent, the attribute of the newly created property
        // is set to its default value.
        // 4.c. Return true.

        PropertyDescriptor defaults;
        entryInMap->setWithoutWriteBarrier(jsUndefined());
        entryInMap->attributes = DontDelete | DontEnum | ReadOnly;
        entryInMap->get(defaults);

        putDescriptor(exec, entryInMap, descriptor, defaults);
        if (index >= m_storage->m_length)
            m_storage->m_length = index + 1;
        return true;
    }

    // 5. Return true, if every field in Desc is absent.
    // 6. Return true, if every field in Desc also occurs in current and the value of every field in Desc is the same value as the corresponding field in current when compared using the SameValue algorithm (9.12).
    PropertyDescriptor current;
    entryInMap->get(current);
    if (descriptor.isEmpty() || descriptor.equalTo(exec, current))
        return true;

    // 7. If the [[Configurable]] field of current is false then
    if (!current.configurable()) {
        // 7.a. Reject, if the [[Configurable]] field of Desc is true.
457
        if (descriptor.configurablePresent() && !descriptor.configurable())
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
            return reject(exec, throwException, "Attempting to change configurable attribute of unconfigurable property.");
        // 7.b. Reject, if the [[Enumerable]] field of Desc is present and the [[Enumerable]] fields of current and Desc are the Boolean negation of each other.
        if (descriptor.enumerablePresent() && current.enumerable() != descriptor.enumerable())
            return reject(exec, throwException, "Attempting to change enumerable attribute of unconfigurable property.");
    }

    // 8. If IsGenericDescriptor(Desc) is true, then no further validation is required.
    if (!descriptor.isGenericDescriptor()) {
        // 9. Else, if IsDataDescriptor(current) and IsDataDescriptor(Desc) have different results, then
        if (current.isDataDescriptor() != descriptor.isDataDescriptor()) {
            // 9.a. Reject, if the [[Configurable]] field of current is false.
            if (!current.configurable())
                return reject(exec, throwException, "Attempting to change access mechanism for an unconfigurable property.");
            // 9.b. If IsDataDescriptor(current) is true, then convert the property named P of object O from a
            // data property to an accessor property. Preserve the existing values of the converted property‘s
            // [[Configurable]] and [[Enumerable]] attributes and set the rest of the property‘s attributes to
            // their default values.
            // 9.c. Else, convert the property named P of object O from an accessor property to a data property.
            // Preserve the existing values of the converted property‘s [[Configurable]] and [[Enumerable]]
            // attributes and set the rest of the property‘s attributes to their default values.
        } else if (current.isDataDescriptor() && descriptor.isDataDescriptor()) {
            // 10. Else, if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true, then
            // 10.a. If the [[Configurable]] field of current is false, then
            if (!current.configurable() && !current.writable()) {
                // 10.a.i. Reject, if the [[Writable]] field of current is false and the [[Writable]] field of Desc is true.
                if (descriptor.writable())
                    return reject(exec, throwException, "Attempting to change writable attribute of unconfigurable property.");
                // 10.a.ii. If the [[Writable]] field of current is false, then
                // 10.a.ii.1. Reject, if the [[Value]] field of Desc is present and SameValue(Desc.[[Value]], current.[[Value]]) is false.
                if (descriptor.value() && !sameValue(exec, descriptor.value(), current.value()))
                    return reject(exec, throwException, "Attempting to change value of a readonly property.");
            }
            // 10.b. else, the [[Configurable]] field of current is true, so any change is acceptable.
        } else {
492
            ASSERT(current.isAccessorDescriptor() && current.getterPresent() && current.setterPresent());
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
            // 11. Else, IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) are both true so, if the [[Configurable]] field of current is false, then
            if (!current.configurable()) {
                // 11.i. Reject, if the [[Set]] field of Desc is present and SameValue(Desc.[[Set]], current.[[Set]]) is false.
                if (descriptor.setterPresent() && descriptor.setter() != current.setter())
                    return reject(exec, throwException, "Attempting to change the setter of an unconfigurable property.");
                // 11.ii. Reject, if the [[Get]] field of Desc is present and SameValue(Desc.[[Get]], current.[[Get]]) is false.
                if (descriptor.getterPresent() && descriptor.getter() != current.getter())
                    return reject(exec, throwException, "Attempting to change the getter of an unconfigurable property.");
            }
        }
    }

    // 12. For each attribute field of Desc that is present, set the correspondingly named attribute of the property named P of object O to the value of the field.
    putDescriptor(exec, entryInMap, descriptor, current);
    // 13. Return true.
    return true;
}

void JSArray::setLengthWritable(ExecState* exec, bool writable)
{
    ASSERT(isLengthWritable() || !writable);
    if (!isLengthWritable() || writable)
        return;

    enterSparseMode(exec->globalData());

519
    SparseArrayValueMap* map = m_sparseValueMap;
520 521 522 523 524 525 526 527 528 529 530 531 532
    ASSERT(map);
    map->setLengthIsReadOnly();
}

// Defined in ES5.1 15.4.5.1
bool JSArray::defineOwnProperty(JSObject* object, ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor, bool throwException)
{
    JSArray* array = static_cast<JSArray*>(object);

    // 3. If P is "length", then
    if (propertyName == exec->propertyNames().length) {
        // All paths through length definition call the default [[DefineOwnProperty]], hence:
        // from ES5.1 8.12.9 7.a.
533
        if (descriptor.configurablePresent() && descriptor.configurable())
534 535
            return reject(exec, throwException, "Attempting to change configurable attribute of unconfigurable property.");
        // from ES5.1 8.12.9 7.b.
536
        if (descriptor.enumerablePresent() && descriptor.enumerable())
537 538 539 540 541 542 543
            return reject(exec, throwException, "Attempting to change enumerable attribute of unconfigurable property.");

        // a. If the [[Value]] field of Desc is absent, then
        // a.i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", Desc, and Throw as arguments.
        if (descriptor.isAccessorDescriptor())
            return reject(exec, throwException, "Attempting to change access mechanism for an unconfigurable property.");
        // from ES5.1 8.12.9 10.a.
544
        if (!array->isLengthWritable() && descriptor.writablePresent() && descriptor.writable())
545 546 547
            return reject(exec, throwException, "Attempting to change writable attribute of unconfigurable property.");
        // This descriptor is either just making length read-only, or changing nothing!
        if (!descriptor.value()) {
548 549
            if (descriptor.writablePresent())
                array->setLengthWritable(exec, descriptor.writable());
550 551 552 553 554 555 556 557 558 559 560 561 562 563
            return true;
        }
        
        // b. Let newLenDesc be a copy of Desc.
        // c. Let newLen be ToUint32(Desc.[[Value]]).
        unsigned newLen = descriptor.value().toUInt32(exec);
        // d. If newLen is not equal to ToNumber( Desc.[[Value]]), throw a RangeError exception.
        if (newLen != descriptor.value().toNumber(exec)) {
            throwError(exec, createRangeError(exec, "Invalid array length"));
            return false;
        }

        // Based on SameValue check in 8.12.9, this is always okay.
        if (newLen == array->length()) {
564 565
            if (descriptor.writablePresent())
                array->setLengthWritable(exec, descriptor.writable());
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
            return true;
        }

        // e. Set newLenDesc.[[Value] to newLen.
        // f. If newLen >= oldLen, then
        // f.i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and Throw as arguments.
        // g. Reject if oldLenDesc.[[Writable]] is false.
        if (!array->isLengthWritable())
            return reject(exec, throwException, "Attempting to change value of a readonly property.");
        
        // h. If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true.
        // i. Else,
        // i.i. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be deleted.
        // i.ii. Let newWritable be false.
        // i.iii. Set newLenDesc.[[Writable] to true.
        // j. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and Throw as arguments.
        // k. If succeeded is false, return false.
        // l. While newLen < oldLen repeat,
        // l.i. Set oldLen to oldLen – 1.
        // l.ii. Let deleteSucceeded be the result of calling the [[Delete]] internal method of A passing ToString(oldLen) and false as arguments.
        // l.iii. If deleteSucceeded is false, then
587
        if (!array->setLength(exec, newLen, throwException)) {
588 589 590 591
            // 1. Set newLenDesc.[[Value] to oldLen+1.
            // 2. If newWritable is false, set newLenDesc.[[Writable] to false.
            // 3. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and false as arguments.
            // 4. Reject.
592 593
            if (descriptor.writablePresent())
                array->setLengthWritable(exec, descriptor.writable());
594 595 596 597
            return false;
        }

        // m. If newWritable is false, then
598 599 600 601 602
        // i. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length",
        //    Property Descriptor{[[Writable]]: false}, and false as arguments. This call will always
        //    return true.
        if (descriptor.writablePresent())
            array->setLengthWritable(exec, descriptor.writable());
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
        // n. Return true.
        return true;
    }

    // 4. Else if P is an array index (15.4), then
    bool isArrayIndex;
    // a. Let index be ToUint32(P).
    unsigned index = propertyName.toArrayIndex(isArrayIndex);
    if (isArrayIndex) {
        // b. Reject if index >= oldLen and oldLenDesc.[[Writable]] is false.
        if (index >= array->length() && !array->isLengthWritable())
            return reject(exec, throwException, "Attempting to define numeric property on array with non-writable length property.");
        // c. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing P, Desc, and false as arguments.
        // d. Reject if succeeded is false.
        // e. If index >= oldLen
        // e.i. Set oldLenDesc.[[Value]] to index + 1.
        // e.ii. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", oldLenDesc, and false as arguments. This call will always return true.
        // f. Return true.
        return array->defineOwnNumericProperty(exec, index, descriptor, throwException);
    }

    return JSObject::defineOwnProperty(object, exec, propertyName, descriptor, throwException);
}

627
bool JSArray::getOwnPropertySlotByIndex(JSCell* cell, ExecState* exec, unsigned i, PropertySlot& slot)
628
{
629
    JSArray* thisObject = jsCast<JSArray*>(cell);
630
    ArrayStorage* storage = thisObject->m_storage;
631

ggaren@apple.com's avatar
ggaren@apple.com committed
632
    if (i >= storage->m_length) {
barraclough@apple.com's avatar
barraclough@apple.com committed
633
        if (i > MAX_ARRAY_INDEX)
634
            return thisObject->methodTable()->getOwnPropertySlot(thisObject, exec, Identifier::from(exec, i), slot);
darin's avatar
darin committed
635 636 637
        return false;
    }

638
    if (i < thisObject->m_vectorLength) {
639 640 641
        JSValue value = storage->m_vector[i].get();
        if (value) {
            slot.setValue(value);
darin's avatar
darin committed
642 643
            return true;
        }
644
    } else if (SparseArrayValueMap* map = thisObject->m_sparseValueMap) {
645 646
        SparseArrayValueMap::iterator it = map->find(i);
        if (it != map->notFound()) {
647
            it->second.get(slot);
648
            return true;
darin's avatar
darin committed
649 650 651
        }
    }

652
    return JSObject::getOwnPropertySlot(thisObject, exec, Identifier::from(exec, i), slot);
darin's avatar
darin committed
653 654
}

655 656
bool JSArray::getOwnPropertySlot(JSCell* cell, ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
{
657
    JSArray* thisObject = jsCast<JSArray*>(cell);
darin's avatar
darin committed
658
    if (propertyName == exec->propertyNames().length) {
659
        slot.setValue(jsNumber(thisObject->length()));
darin's avatar
darin committed
660 661 662 663
        return true;
    }

    bool isArrayIndex;
664
    unsigned i = propertyName.toArrayIndex(isArrayIndex);
darin's avatar
darin committed
665
    if (isArrayIndex)
666
        return JSArray::getOwnPropertySlotByIndex(thisObject, exec, i, slot);
darin's avatar
darin committed
667

668
    return JSObject::getOwnPropertySlot(thisObject, exec, propertyName, slot);
darin's avatar
darin committed
669 670
}

671
bool JSArray::getOwnPropertyDescriptor(JSObject* object, ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor)
672
{
673
    JSArray* thisObject = jsCast<JSArray*>(object);
674
    if (propertyName == exec->propertyNames().length) {
675
        descriptor.setDescriptor(jsNumber(thisObject->length()), DontDelete | DontEnum);
676 677
        return true;
    }
678

679
    ArrayStorage* storage = thisObject->m_storage;
680 681
    
    bool isArrayIndex;
682
    unsigned i = propertyName.toArrayIndex(isArrayIndex);
683
    if (isArrayIndex) {
684
        if (i >= storage->m_length)
685
            return false;
686
        if (i < thisObject->m_vectorLength) {
687
            WriteBarrier<Unknown>& value = storage->m_vector[i];
688
            if (value) {
689
                descriptor.setDescriptor(value.get(), 0);
690 691
                return true;
            }
692
        } else if (SparseArrayValueMap* map = thisObject->m_sparseValueMap) {
693 694
            SparseArrayValueMap::iterator it = map->find(i);
            if (it != map->notFound()) {
695
                it->second.get(descriptor);
696
                return true;
697 698 699
            }
        }
    }
700
    return JSObject::getOwnPropertyDescriptor(thisObject, exec, propertyName, descriptor);
701 702
}

703 704 705
// ECMA 15.4.5.1
void JSArray::put(JSCell* cell, ExecState* exec, const Identifier& propertyName, JSValue value, PutPropertySlot& slot)
{
706
    JSArray* thisObject = jsCast<JSArray*>(cell);
darin's avatar
darin committed
707
    bool isArrayIndex;
708
    unsigned i = propertyName.toArrayIndex(isArrayIndex);
darin's avatar
darin committed
709
    if (isArrayIndex) {
710
        putByIndex(thisObject, exec, i, value);
darin's avatar
darin committed
711 712 713 714
        return;
    }

    if (propertyName == exec->propertyNames().length) {
weinig@apple.com's avatar
weinig@apple.com committed
715 716
        unsigned newLength = value.toUInt32(exec);
        if (value.toNumber(exec) != static_cast<double>(newLength)) {
717
            throwError(exec, createRangeError(exec, "Invalid array length"));
darin's avatar
darin committed
718 719
            return;
        }
720
        thisObject->setLength(exec, newLength, slot.isStrictMode());
darin's avatar
darin committed
721 722 723
        return;
    }

724
    JSObject::put(thisObject, exec, propertyName, value, slot);
darin's avatar
darin committed
725 726
}

727
void JSArray::putByIndex(JSCell* cell, ExecState* exec, unsigned i, JSValue value)
728
{
729
    JSArray* thisObject = jsCast<JSArray*>(cell);
730 731 732
    thisObject->checkConsistency();

    ArrayStorage* storage = thisObject->m_storage;
733

734
    // Fast case - store to the vector.
735
    if (i < thisObject->m_vectorLength) {
736
        WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
737 738 739 740 741 742 743 744 745 746
        unsigned length = storage->m_length;

        // Update m_length & m_numValuesInVector as necessary.
        if (i >= length) {
            length = i + 1;
            storage->m_length = length;
            ++storage->m_numValuesInVector;
        } else if (!valueSlot)
            ++storage->m_numValuesInVector;

747 748
        valueSlot.set(exec->globalData(), thisObject, value);
        thisObject->checkConsistency();
darin's avatar
darin committed
749 750 751
        return;
    }

752 753 754 755 756 757 758 759
    // Handle 2^32-1 - this is not an array index (see ES5.1 15.4), and is treated as a regular property.
    if (UNLIKELY(i > MAX_ARRAY_INDEX)) {
        PutPropertySlot slot;
        thisObject->methodTable()->put(thisObject, exec, Identifier::from(exec, i), value, slot);
        return;
    }

    // For all other cases, call putByIndexBeyondVectorLength.
760
    thisObject->putByIndexBeyondVectorLength(exec, i, value);
761
    thisObject->checkConsistency();
762 763
}

764
NEVER_INLINE void JSArray::putByIndexBeyondVectorLength(ExecState* exec, unsigned i, JSValue value)
765
{
766 767
    JSGlobalData& globalData = exec->globalData();

768
    // i should be a valid array index that is outside of the current vector.
769
    ASSERT(i >= m_vectorLength);
770
    ASSERT(i <= MAX_ARRAY_INDEX);
771

772
    ArrayStorage* storage = m_storage;
773
    SparseArrayValueMap* map = m_sparseValueMap;
ap@webkit.org's avatar
ap@webkit.org committed
774

775 776
    // First, handle cases where we don't currently have a sparse map.
    if (LIKELY(!map)) {
777 778 779 780
        // Update m_length if necessary.
        if (i >= storage->m_length)
            storage->m_length = i + 1;

781
        // Check that it is sensible to still be using a vector, and then try to grow the vector.
782
        if (LIKELY((isDenseEnoughForVector(i, storage->m_numValuesInVector)) && increaseVectorLength(globalData, i + 1))) {
783
            // success! - reread m_storage since it has likely been reallocated, and store to the vector.
784
            storage = m_storage;
785
            storage->m_vector[i].set(globalData, this, value);
786
            ++storage->m_numValuesInVector;
787
            return;
darin's avatar
darin committed
788
        }
789 790
        // We don't want to, or can't use a vector to hold this property - allocate a sparse map & add the value.
        map = new SparseArrayValueMap;
791
        m_sparseValueMap = map;
792
        map->put(exec, this, i, value);
793
        return;
darin's avatar
darin committed
794 795
    }

796 797 798 799 800 801 802 803 804 805 806 807
    // Update m_length if necessary.
    unsigned length = storage->m_length;
    if (i >= length) {
        // Prohibit growing the array if length is not writable.
        if (map->lengthIsReadOnly()) {
            // FIXME: should throw in strict mode.
            return;
        }
        length = i + 1;
        storage->m_length = length;
    }

808 809 810
    // We are currently using a map - check whether we still want to be doing so.
    // We will continue  to use a sparse map if SparseMode is set, a vector would be too sparse, or if allocation fails.
    unsigned numValuesInArray = storage->m_numValuesInVector + map->size();
811
    if (map->sparseMode() || !isDenseEnoughForVector(length, numValuesInArray) || !increaseVectorLength(exec->globalData(), length)) {
812
        map->put(exec, this, i, value);
barraclough@apple.com's avatar
barraclough@apple.com committed
813 814
        return;
    }
darin's avatar
darin committed
815

816
    // Reread m_storage afterincreaseVectorLength, update m_numValuesInVector.
817
    storage = m_storage;
818
    storage->m_numValuesInVector = numValuesInArray;
819

820 821 822 823
    // Copy all values from the map into the vector, and delete the map.
    WriteBarrier<Unknown>* vector = storage->m_vector;
    SparseArrayValueMap::const_iterator end = map->end();
    for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it)
824
        vector[it->first].set(globalData, this, it->second.getNonSparseMode());
825
    delete map;
826
    m_sparseValueMap = 0;
827 828 829 830 831 832

    // Store the new property into the vector.
    WriteBarrier<Unknown>& valueSlot = vector[i];
    if (!valueSlot)
        ++storage->m_numValuesInVector;
    valueSlot.set(globalData, this, value);
darin's avatar
darin committed
833 834
}

835 836
bool JSArray::deleteProperty(JSCell* cell, ExecState* exec, const Identifier& propertyName)
{
837
    JSArray* thisObject = jsCast<JSArray*>(cell);
darin's avatar
darin committed
838
    bool isArrayIndex;
839
    unsigned i = propertyName.toArrayIndex(isArrayIndex);
darin's avatar
darin committed
840
    if (isArrayIndex)
841
        return thisObject->methodTable()->deletePropertyByIndex(thisObject, exec, i);
darin's avatar
darin committed
842 843 844 845

    if (propertyName == exec->propertyNames().length)
        return false;

846
    return JSObject::deleteProperty(thisObject, exec, propertyName);
darin's avatar
darin committed
847 848
}

849
bool JSArray::deletePropertyByIndex(JSCell* cell, ExecState* exec, unsigned i)
850
{
851
    JSArray* thisObject = jsCast<JSArray*>(cell);
852 853
    thisObject->checkConsistency();

854 855 856
    if (i > MAX_ARRAY_INDEX)
        return thisObject->methodTable()->deleteProperty(thisObject, exec, Identifier::from(exec, i));

857
    ArrayStorage* storage = thisObject->m_storage;
858
    
859
    if (i < thisObject->m_vectorLength) {
860
        WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
861 862 863
        if (valueSlot) {
            valueSlot.clear();
            --storage->m_numValuesInVector;
864
        }
865
    } else if (SparseArrayValueMap* map = thisObject->m_sparseValueMap) {
866 867
        SparseArrayValueMap::iterator it = map->find(i);
        if (it != map->notFound()) {
868 869
            if (it->second.attributes & DontDelete)
                return false;
870
            map->remove(it);
darin's avatar
darin committed
871 872 873
        }
    }

874
    thisObject->checkConsistency();
875 876
    return true;
}
877

878 879
static int compareKeysForQSort(const void* a, const void* b)
{
880 881
    unsigned da = *static_cast<const unsigned*>(a);
    unsigned db = *static_cast<const unsigned*>(b);
882
    return (da > db) - (da < db);
darin's avatar
darin committed
883 884
}

885
void JSArray::getOwnPropertyNames(JSObject* object, ExecState* exec, PropertyNameArray& propertyNames, EnumerationMode mode)
darin's avatar
darin committed
886
{
887
    JSArray* thisObject = jsCast<JSArray*>(object);
darin's avatar
darin committed
888
    // FIXME: Filling PropertyNameArray with an identifier for every integer
889 890
    // is incredibly inefficient for large arrays. We need a different approach,
    // which almost certainly means a different structure for PropertyNameArray.
darin's avatar
darin committed
891

892
    ArrayStorage* storage = thisObject->m_storage;
893
    
894
    unsigned usedVectorLength = min(storage->m_length, thisObject->m_vectorLength);
darin's avatar
darin committed
895
    for (unsigned i = 0; i < usedVectorLength; ++i) {
896
        if (storage->m_vector[i])
ap@webkit.org's avatar
ap@webkit.org committed
897
            propertyNames.add(Identifier::from(exec, i));
darin's avatar
darin committed
898 899
    }

900
    if (SparseArrayValueMap* map = thisObject->m_sparseValueMap) {
901
        Vector<unsigned> keys;
902 903
        keys.reserveCapacity(map->size());
        
904
        SparseArrayValueMap::const_iterator end = map->end();
905 906
        for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it) {
            if (mode == IncludeDontEnumProperties || !(it->second.attributes & DontEnum))
907
                keys.append(static_cast<unsigned>(it->first));
908 909
        }

910
        qsort(keys.begin(), keys.size(), sizeof(unsigned), compareKeysForQSort);
911
        for (unsigned i = 0; i < keys.size(); ++i)
912
            propertyNames.add(Identifier::from(exec, keys[i]));
darin's avatar
darin committed
913
    }
914

915 916 917
    if (mode == IncludeDontEnumProperties)
        propertyNames.add(exec->propertyNames().length);

918
    JSObject::getOwnPropertyNames(thisObject, exec, propertyNames, mode);
darin's avatar
darin committed
919 920
}

921 922 923 924 925
ALWAYS_INLINE unsigned JSArray::getNewVectorLength(unsigned desiredLength)
{
    ASSERT(desiredLength <= MAX_STORAGE_VECTOR_LENGTH);

    unsigned increasedLength;
926
    unsigned maxInitLength = min(m_storage->m_length, 100000U);
927

928 929
    if (desiredLength < maxInitLength)
        increasedLength = maxInitLength;
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
    else if (!m_vectorLength)
        increasedLength = max(desiredLength, lastArraySize);
    else {
        // Mathematically equivalent to:
        //   increasedLength = (newLength * 3 + 1) / 2;
        // or:
        //   increasedLength = (unsigned)ceil(newLength * 1.5));
        // This form is not prone to internal overflow.
        increasedLength = desiredLength + (desiredLength >> 1) + (desiredLength & 1);
    }

    ASSERT(increasedLength >= desiredLength);

    lastArraySize = min(increasedLength, FIRST_VECTOR_GROW);

    return min(increasedLength, MAX_STORAGE_VECTOR_LENGTH);
}

948
bool JSArray::increaseVectorLength(JSGlobalData& globalData, unsigned newLength)
darin's avatar
darin committed
949
{
ap@webkit.org's avatar
ap@webkit.org committed
950 951
    // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
    // to the vector. Callers have to account for that, because they can do it more efficiently.
952 953
    if (newLength > MAX_STORAGE_VECTOR_LENGTH)
        return false;
ap@webkit.org's avatar
ap@webkit.org committed
954

955
    ArrayStorage* storage = m_storage;
darin's avatar
darin committed
956

957
    unsigned vectorLength = m_vectorLength;
darin's avatar
darin committed
958
    ASSERT(newLength > vectorLength);
959
    unsigned newVectorLength = getNewVectorLength(newLength);
darin's avatar
darin committed
960

961 962
    // Fast case - there is no precapacity. In these cases a realloc makes sense.
    if (LIKELY(!m_indexBias)) {
963 964
        void* newStorage = storage->m_allocBase;
        if (!globalData.heap.tryReallocateStorage(&newStorage, storageSize(vectorLength), storageSize(newVectorLength)))
965
            return false;
966

967 968 969
        storage = m_storage = reinterpret_cast_ptr<ArrayStorage*>(static_cast<char*>(newStorage));
        m_storage->m_allocBase = newStorage;
        ASSERT(m_storage->m_allocBase);
970

971 972 973 974 975 976 977 978 979 980 981 982 983
        WriteBarrier<Unknown>* vector = storage->m_vector;
        for (unsigned i = vectorLength; i < newVectorLength; ++i)
            vector[i].clear();

        m_vectorLength = newVectorLength;
        
        return true;
    }

    // Remove some, but not all of the precapacity. Atomic decay, & capped to not overflow array length.
    unsigned newIndexBias = min(m_indexBias >> 1, MAX_STORAGE_VECTOR_LENGTH - newVectorLength);
    // Calculate new stoarge capcity, allowing room for the pre-capacity.
    unsigned newStorageCapacity = newVectorLength + newIndexBias;
984 985
    void* newAllocBase = 0;
    if (!globalData.heap.tryAllocateStorage(storageSize(newStorageCapacity), &newAllocBase))    
986 987 988
        return false;
    // The sum of m_vectorLength and m_indexBias will never exceed MAX_STORAGE_VECTOR_LENGTH.
    ASSERT(m_vectorLength <= MAX_STORAGE_VECTOR_LENGTH && (MAX_STORAGE_VECTOR_LENGTH - m_vectorLength) >= m_indexBias);
ap@webkit.org's avatar
ap@webkit.org committed
989

990
    m_vectorLength = newVectorLength;
991 992 993 994 995 996 997 998 999 1000
    m_indexBias = newIndexBias;
    m_storage = reinterpret_cast_ptr<ArrayStorage*>(reinterpret_cast<WriteBarrier<Unknown>*>(newAllocBase) + m_indexBias);

    // Copy the ArrayStorage header & current contents of the vector, clear the new post-capacity.
    memmove(m_storage, storage, storageSize(vectorLength));
    for (unsigned i = vectorLength; i < m_vectorLength; ++i)
        m_storage->m_vector[i].clear();

    // Free the old allocation, update m_allocBase.
    m_storage->m_allocBase = newAllocBase;
darin's avatar
darin committed
1001

1002 1003
    return true;
}
darin's avatar
darin committed
1004

1005
// This method makes room in the vector, but leaves the new space uncleared.
1006
bool JSArray::unshiftCountSlowCase(JSGlobalData& globalData, unsigned count)
1007
{
1008 1009
    // If not, we should have handled this on the fast path.
    ASSERT(count > m_indexBias);
1010

1011
    ArrayStorage* storage = m_storage;
1012

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
    // Step 1:
    // Gather 4 key metrics:
    //  * usedVectorLength - how many entries are currently in the vector (conservative estimate - fewer may be in use in sparse vectors).
    //  * requiredVectorLength - how many entries are will there be in the vector, after allocating space for 'count' more.
    //  * currentCapacity - what is the current size of the vector, including any pre-capacity.
    //  * desiredCapacity - how large should we like to grow the vector to - based on 2x requiredVectorLength.

    unsigned length = storage->m_length;
    unsigned usedVectorLength = min(m_vectorLength, length);
    ASSERT(usedVectorLength <= MAX_STORAGE_VECTOR_LENGTH);
    // Check that required vector length is possible, in an overflow-safe fashion.
    if (count > MAX_STORAGE_VECTOR_LENGTH - usedVectorLength)
1025
        return false;
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
    unsigned requiredVectorLength = usedVectorLength + count;
    ASSERT(requiredVectorLength <= MAX_STORAGE_VECTOR_LENGTH);
    // The sum of m_vectorLength and m_indexBias will never exceed MAX_STORAGE_VECTOR_LENGTH.
    ASSERT(m_vectorLength <= MAX_STORAGE_VECTOR_LENGTH && (MAX_STORAGE_VECTOR_LENGTH - m_vectorLength) >= m_indexBias);
    unsigned currentCapacity = m_vectorLength + m_indexBias;
    // The calculation of desiredCapacity won't overflow, due to the range of MAX_STORAGE_VECTOR_LENGTH.
    unsigned desiredCapacity = min(MAX_STORAGE_VECTOR_LENGTH, max(BASE_VECTOR_LEN, requiredVectorLength) << 1);

    // Step 2:
    // We're either going to choose to allocate a new ArrayStorage, or we're going to reuse the existing on.

1037
    void* newAllocBase = 0;
1038 1039 1040 1041 1042 1043
    unsigned newStorageCapacity;
    // If the current storage array is sufficiently large (but not too large!) then just keep using it.
    if (currentCapacity > desiredCapacity && isDenseEnoughForVector(currentCapacity, requiredVectorLength)) {
        newAllocBase = storage->m_allocBase;
        newStorageCapacity = currentCapacity;
    } else {
1044
        if (!globalData.heap.tryAllocateStorage(storageSize(desiredCapacity), &newAllocBase))
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
            return false;
        newStorageCapacity = desiredCapacity;
    }

    // Step 3:
    // Work out where we're going to move things to.

    // Determine how much of the vector to use as pre-capacity, and how much as post-capacity.
    // If the vector had no free post-capacity (length >= m_vectorLength), don't give it any.
    // If it did, we calculate the amount that will remain based on an atomic decay - leave the
    // vector with half the post-capacity it had previously.
    unsigned postCapacity = 0;
    if (length < m_vectorLength) {
        // Atomic decay, + the post-capacity cannot be greater than what is available.
        postCapacity = min((m_vectorLength - length) >> 1, newStorageCapacity - requiredVectorLength);
        // If we're moving contents within the same allocation, the post-capacity is being reduced.
        ASSERT(newAllocBase != storage->m_allocBase || postCapacity < m_vectorLength - length);
    }

    m_vectorLength = requiredVectorLength + postCapacity;
    m_indexBias = newStorageCapacity - m_vectorLength;
    m_storage = reinterpret_cast_ptr<ArrayStorage*>(reinterpret_cast<WriteBarrier<Unknown>*>(newAllocBase) + m_indexBias);

    // Step 4:
    // Copy array data / header into their new locations, clear post-capacity & free any old allocation.

    // If this is being moved within the existing buffer of memory, we are always shifting data
    // to the right (since count > m_indexBias). As such this memmove cannot trample the header.
    memmove(m_storage->m_vector + count, storage->m_vector, sizeof(WriteBarrier<Unknown>) * usedVectorLength);
    memmove(m_storage, storage, storageSize(0));

    // Are we copying into a new allocation?
    if (newAllocBase != m_storage->m_allocBase) {
        // Free the old allocation, update m_allocBase.
        m_storage->m_allocBase = newAllocBase;

        // We need to clear any entries in the vector beyond length. We only need to
        // do this if this was a new allocation, because if we're using an existing
        // allocation the post-capacity will already be cleared, and in an existing
        // allocation we can only beshrinking the amount of post capacity.
        for (unsigned i = requiredVectorLength; i < m_vectorLength; ++i)
            m_storage->m_vector[i].clear();
    }
1088

ap@webkit.org's avatar
ap@webkit.org committed
1089
    return true;
darin's avatar
darin committed
1090 1091
}

1092
bool JSArray::setLength(ExecState* exec, unsigned newLength, bool throwException)
darin's avatar
darin committed
1093
{
1094 1095
    checkConsistency();

1096
    ArrayStorage* storage = m_storage;
1097
    unsigned length = storage->m_length;
darin's avatar
darin committed
1098

1099
    // If the length is read only then we enter sparse mode, so should enter the following 'if'.
1100
    ASSERT(isLengthWritable() || m_sparseValueMap);
1101

1102
    if (SparseArrayValueMap* map = m_sparseValueMap) {
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
        // Fail if the length is not writable.
        if (map->lengthIsReadOnly())
            return reject(exec, throwException, StrictModeReadonlyPropertyWriteError);

        if (newLength < length) {
            // Copy any keys we might be interested in into a vector.
            Vector<unsigned> keys;
            keys.reserveCapacity(min(map->size(), static_cast<size_t>(length - newLength)));
            SparseArrayValueMap::const_iterator end = map->end();
            for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it) {
1113
                unsigned index = static_cast<unsigned>(it->first);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
                if (index < length && index >= newLength)
                    keys.append(index);
            }

            // Check if the array is in sparse mode. If so there may be non-configurable
            // properties, so we have to perform deletion with caution, if not we can
            // delete values in any order.
            if (map->sparseMode()) {
                qsort(keys.begin(), keys.size(), sizeof(unsigned), compareKeysForQSort);
                unsigned i = keys.size();
                while (i) {
                    unsigned index = keys[--i];
                    SparseArrayValueMap::iterator it = map->find(index);
                    ASSERT(it != map->notFound());
                    if (it->second.attributes & DontDelete) {
                        storage->m_length = index + 1;
                        return reject(exec, throwException, "Unable to delete property.");
                    }
                    map->remove(it);
                }
            } else {
                for (unsigned i = 0; i < keys.size(); ++i)
                    map->remove(keys[i]);
                if (map->isEmpty()) {
                    delete map;
1139
                    m_sparseValueMap = 0;