JSArray.cpp 71.8 KB
Newer Older
darin's avatar
darin committed
1
2
/*
 *  Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
3
 *  Copyright (C) 2003, 2007, 2008, 2009 Apple Inc. All rights reserved.
darin's avatar
darin committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 *  Copyright (C) 2003 Peter Kelly (pmk@post.com)
 *  Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include "config.h"
darin@apple.com's avatar
darin@apple.com committed
24
#include "JSArray.h"
darin's avatar
darin committed
25

darin@apple.com's avatar
darin@apple.com committed
26
#include "ArrayPrototype.h"
27
#include "CachedCall.h"
28
#include "Error.h"
29
#include "Executable.h"
30
#include "GetterSetter.h"
darin's avatar
darin committed
31
#include "PropertyNameArray.h"
ap@webkit.org's avatar
ap@webkit.org committed
32
#include <wtf/AVLTree.h>
33
#include <wtf/Assertions.h>
34
#include <wtf/OwnPtr.h>
35
#include <Operations.h>
darin's avatar
darin committed
36

37
using namespace std;
ap@webkit.org's avatar
ap@webkit.org committed
38
using namespace WTF;
bdash's avatar
bdash committed
39

40
namespace JSC {
darin's avatar
darin committed
41

ggaren@apple.com's avatar
ggaren@apple.com committed
42
43
ASSERT_CLASS_FITS_IN_CELL(JSArray);

barraclough@apple.com's avatar
barraclough@apple.com committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
// Overview of JSArray
//
// Properties of JSArray objects may be stored in one of three locations:
//   * The regular JSObject property map.
//   * A storage vector.
//   * A sparse map of array entries.
//
// Properties with non-numeric identifiers, with identifiers that are not representable
// as an unsigned integer, or where the value is greater than  MAX_ARRAY_INDEX
// (specifically, this is only one property - the value 0xFFFFFFFFU as an unsigned 32-bit
// integer) are not considered array indices and will be stored in the JSObject property map.
//
// All properties with a numeric identifer, representable as an unsigned integer i,
// where (i <= MAX_ARRAY_INDEX), are an array index and will be stored in either the
// storage vector or the sparse map.  An array index i will be handled in the following
// fashion:
//
61
62
//   * Where (i < MIN_SPARSE_ARRAY_INDEX) the value will be stored in the storage vector,
//     unless the array is in SparseMode in which case all properties go into the map.
barraclough@apple.com's avatar
barraclough@apple.com committed
63
64
65
66
67
68
69
70
71
//   * Where (MIN_SPARSE_ARRAY_INDEX <= i <= MAX_STORAGE_VECTOR_INDEX) the value will either
//     be stored in the storage vector or in the sparse array, depending on the density of
//     data that would be stored in the vector (a vector being used where at least
//     (1 / minDensityMultiplier) of the entries would be populated).
//   * Where (MAX_STORAGE_VECTOR_INDEX < i <= MAX_ARRAY_INDEX) the value will always be stored
//     in the sparse array.

// The definition of MAX_STORAGE_VECTOR_LENGTH is dependant on the definition storageSize
// function below - the MAX_STORAGE_VECTOR_LENGTH limit is defined such that the storage
72
73
74
// size calculation cannot overflow.  (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>)) +
// (vectorLength * sizeof(WriteBarrier<Unknown>)) must be <= 0xFFFFFFFFU (which is maximum value of size_t).
#define MAX_STORAGE_VECTOR_LENGTH static_cast<unsigned>((0xFFFFFFFFU - (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>))) / sizeof(WriteBarrier<Unknown>))
barraclough@apple.com's avatar
barraclough@apple.com committed
75
76
77
78
79

// These values have to be macros to be used in max() and min() without introducing
// a PIC branch in Mach-O binaries, see <rdar://problem/5971391>.
#define MIN_SPARSE_ARRAY_INDEX 10000U
#define MAX_STORAGE_VECTOR_INDEX (MAX_STORAGE_VECTOR_LENGTH - 1)
80
// 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer.
barraclough@apple.com's avatar
barraclough@apple.com committed
81
#define MAX_ARRAY_INDEX 0xFFFFFFFEU
darin's avatar
darin committed
82

83
84
85
86
87
88
89
90
// The value BASE_VECTOR_LEN is the maximum number of vector elements we'll allocate
// for an array that was created with a sepcified length (e.g. a = new Array(123))
#define BASE_VECTOR_LEN 4U
    
// The upper bound to the size we'll grow a zero length array when the first element
// is added.
#define FIRST_VECTOR_GROW 4U

darin's avatar
darin committed
91
// Our policy for when to use a vector and when to use a sparse map.
barraclough@apple.com's avatar
barraclough@apple.com committed
92
93
// For all array indices under MIN_SPARSE_ARRAY_INDEX, we always use a vector.
// When indices greater than MIN_SPARSE_ARRAY_INDEX are involved, we use a vector
darin's avatar
darin committed
94
95
96
// as long as it is 1/8 full. If more sparse than that, we use a map.
static const unsigned minDensityMultiplier = 8;

97
const ClassInfo JSArray::s_info = {"Array", &JSNonFinalObject::s_info, 0, 0, CREATE_METHOD_TABLE(JSArray)};
darin's avatar
darin committed
98

99
100
101
102
103
// We keep track of the size of the last array after it was grown.  We use this
// as a simple heuristic for as the value to grow the next array from size 0.
// This value is capped by the constant FIRST_VECTOR_GROW defined above.
static unsigned lastArraySize = 0;

darin's avatar
darin committed
104
105
static inline size_t storageSize(unsigned vectorLength)
{
barraclough@apple.com's avatar
barraclough@apple.com committed
106
107
108
109
    ASSERT(vectorLength <= MAX_STORAGE_VECTOR_LENGTH);

    // MAX_STORAGE_VECTOR_LENGTH is defined such that provided (vectorLength <= MAX_STORAGE_VECTOR_LENGTH)
    // - as asserted above - the following calculation cannot overflow.
110
    size_t size = (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>)) + (vectorLength * sizeof(WriteBarrier<Unknown>));
barraclough@apple.com's avatar
barraclough@apple.com committed
111
112
    // Assertion to detect integer overflow in previous calculation (should not be possible, provided that
    // MAX_STORAGE_VECTOR_LENGTH is correctly defined).
113
    ASSERT(((size - (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>))) / sizeof(WriteBarrier<Unknown>) == vectorLength) && (size >= (sizeof(ArrayStorage) - sizeof(WriteBarrier<Unknown>))));
barraclough@apple.com's avatar
barraclough@apple.com committed
114
115

    return size;
darin's avatar
darin committed
116
117
118
119
}

static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues)
{
120
    return length <= MIN_SPARSE_ARRAY_INDEX || length / minDensityMultiplier <= numValues;
darin's avatar
darin committed
121
122
}

123
124
#if !CHECK_ARRAY_CONSISTENCY

darin@apple.com's avatar
darin@apple.com committed
125
inline void JSArray::checkConsistency(ConsistencyCheckType)
126
127
128
129
130
{
}

#endif

131
132
JSArray::JSArray(JSGlobalData& globalData, Structure* structure)
    : JSNonFinalObject(globalData, structure)
133
    , m_storage(0)
weinig@apple.com's avatar
weinig@apple.com committed
134
{
135
136
}

137
void JSArray::finishCreation(JSGlobalData& globalData, unsigned initialLength)
138
139
{
    Base::finishCreation(globalData);
140
141
    ASSERT(inherits(&s_info));

142
143
    unsigned initialVectorLength = BASE_VECTOR_LEN;
    unsigned initialStorageSize = storageSize(initialVectorLength);
weinig@apple.com's avatar
weinig@apple.com committed
144

145
    m_storage = static_cast<ArrayStorage*>(fastMalloc(initialStorageSize));
146
    m_storage->m_allocBase = m_storage;
147
    m_storage->m_length = initialLength;
148
    m_indexBias = 0;
149
150
151
152
153
154
155
    m_vectorLength = initialVectorLength;
    m_storage->m_sparseValueMap = 0;
    m_storage->subclassData = 0;
    m_storage->m_numValuesInVector = 0;
#if CHECK_ARRAY_CONSISTENCY
    m_storage->m_inCompactInitialization = false;
#endif
weinig@apple.com's avatar
weinig@apple.com committed
156

157
158
159
    WriteBarrier<Unknown>* vector = m_storage->m_vector;
    for (size_t i = 0; i < initialVectorLength; ++i)
        vector[i].clear();
160

161
162
163
    checkConsistency();
    
    Heap::heap(this)->reportExtraMemoryCost(initialStorageSize);
weinig@apple.com's avatar
weinig@apple.com committed
164
165
}

166
JSArray* JSArray::tryFinishCreationUninitialized(JSGlobalData& globalData, unsigned initialLength)
darin's avatar
darin committed
167
{
168
    Base::finishCreation(globalData);
169
170
    ASSERT(inherits(&s_info));

171
172
173
174
175
176
177
178
    // Check for lengths larger than we can handle with a vector.
    if (initialLength > MAX_STORAGE_VECTOR_LENGTH)
        return 0;

    unsigned initialVectorLength = max(initialLength, BASE_VECTOR_LEN);
    unsigned initialStorageSize = storageSize(initialVectorLength);

    m_storage = static_cast<ArrayStorage*>(fastMalloc(initialStorageSize));
179
    m_storage->m_allocBase = m_storage;
180
    m_storage->m_length = 0;
181
    m_indexBias = 0;
182
    m_vectorLength = initialVectorLength;
183
184
    m_storage->m_sparseValueMap = 0;
    m_storage->subclassData = 0;
185
    m_storage->m_numValuesInVector = initialLength;
186
#if CHECK_ARRAY_CONSISTENCY
187
    m_storage->m_inCompactInitialization = true;
188
#endif
189

190
191
192
193
194
195
    WriteBarrier<Unknown>* vector = m_storage->m_vector;
    for (size_t i = initialLength; i < initialVectorLength; ++i)
        vector[i].clear();

    Heap::heap(this)->reportExtraMemoryCost(initialStorageSize);
    return this;
darin's avatar
darin committed
196
197
}

darin@apple.com's avatar
darin@apple.com committed
198
JSArray::~JSArray()
darin's avatar
darin committed
199
{
200
    ASSERT(jsCast<JSArray*>(this));
201

202
203
204
205
206
    // If we are unable to allocate memory for m_storage then this may be null.
    if (!m_storage)
        return;

    checkConsistency(DestructorConsistencyCheck);
207
208
    delete m_storage->m_sparseValueMap;
    fastFree(m_storage->m_allocBase);
darin's avatar
darin committed
209
210
}

211
212
213
214
215
void JSArray::destroy(JSCell* cell)
{
    jsCast<JSArray*>(cell)->JSArray::~JSArray();
}

216
inline std::pair<SparseArrayValueMap::iterator, bool> SparseArrayValueMap::add(JSArray* array, unsigned i)
217
{
218
219
220
221
222
223
224
225
    SparseArrayEntry entry;
    std::pair<iterator, bool> result = m_map.add(i, entry);
    size_t capacity = m_map.capacity();
    if (capacity != m_reportedCapacity) {
        Heap::heap(array)->reportExtraMemoryCost((capacity - m_reportedCapacity) * (sizeof(unsigned) + sizeof(WriteBarrier<Unknown>)));
        m_reportedCapacity = capacity;
    }
    return result;
226
227
}

228
inline void SparseArrayValueMap::put(ExecState* exec, JSArray* array, unsigned i, JSValue value)
229
{
230
231
    SparseArrayEntry& entry = add(array, i).first->second;

232
    if (!(entry.attributes & Accessor)) {
233
234
235
236
237
238
239
        if (entry.attributes & ReadOnly) {
            // FIXME: should throw if being called from strict mode.
            // throwTypeError(exec, StrictModeReadonlyPropertyWriteError);
            return;
        }

        entry.set(exec->globalData(), array, value);
240
        return;
241
    }
242

243
244
245
246
247
248
249
    JSValue accessor = entry.Base::get();
    ASSERT(accessor.isGetterSetter());
    JSObject* setter = asGetterSetter(accessor)->setter();
    
    if (!setter) {
        throwTypeError(exec, "setting a property that has only a getter");
        return;
250
    }
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

    CallData callData;
    CallType callType = setter->methodTable()->getCallData(setter, callData);
    MarkedArgumentBuffer args;
    args.append(value);
    call(exec, setter, callType, callData, array, args);
}

inline void SparseArrayEntry::get(PropertySlot& slot) const
{
    JSValue value = Base::get();
    ASSERT(value);

    if (LIKELY(!value.isGetterSetter())) {
        slot.setValue(value);
        return;
    }

    JSObject* getter = asGetterSetter(value)->getter();
    if (!getter) {
        slot.setUndefined();
        return;
    }

    slot.setGetterSlot(getter);
}

inline void SparseArrayEntry::get(PropertyDescriptor& descriptor) const
{
    descriptor.setDescriptor(Base::get(), attributes);
}

inline JSValue SparseArrayEntry::get(ExecState* exec, JSArray* array) const
{
    JSValue result = Base::get();
    ASSERT(result);

    if (LIKELY(!result.isGetterSetter()))
        return result;

    JSObject* getter = asGetterSetter(result)->getter();
    if (!getter)
        return jsUndefined();

    CallData callData;
    CallType callType = getter->methodTable()->getCallData(getter, callData);
    return call(exec, getter, callType, callData, array, exec->emptyList());
}

inline JSValue SparseArrayEntry::getNonSparseMode() const
{
    ASSERT(!attributes);
    return Base::get();
304
305
306
307
308
309
310
311
312
}

inline void SparseArrayValueMap::visitChildren(SlotVisitor& visitor)
{
    iterator end = m_map.end();
    for (iterator it = m_map.begin(); it != end; ++it)
        visitor.append(&it->second);
}

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
void JSArray::enterSparseMode(JSGlobalData& globalData)
{
    ArrayStorage* storage = m_storage;
    SparseArrayValueMap* map = storage->m_sparseValueMap;

    if (!map)
        map = storage->m_sparseValueMap = new SparseArrayValueMap;

    if (map->sparseMode())
        return;

    map->setSparseMode();

    unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
    for (unsigned i = 0; i < usedVectorLength; ++i) {
        JSValue value = storage->m_vector[i].get();
        // This will always be a new entry in the map, so no need to check we can write,
        // and attributes are default so no need to set them.
        if (value)
            map->add(this, i).first->second.set(globalData, this, value);
    }

    ArrayStorage* newStorage = static_cast<ArrayStorage*>(fastMalloc(storageSize(0)));
    memcpy(newStorage, m_storage, storageSize(0));
    newStorage->m_allocBase = newStorage;
    fastFree(m_storage);
    m_storage = newStorage;
    m_indexBias = 0;
    m_vectorLength = 0;
}

void JSArray::putDescriptor(ExecState* exec, SparseArrayEntry* entryInMap, PropertyDescriptor& descriptor, PropertyDescriptor& oldDescriptor)
{
    if (descriptor.isDataDescriptor()) {
        if (descriptor.value())
            entryInMap->set(exec->globalData(), this, descriptor.value());
349
350
        else if (oldDescriptor.isAccessorDescriptor())
            entryInMap->set(exec->globalData(), this, jsUndefined());
351
        entryInMap->attributes = descriptor.attributesOverridingCurrent(oldDescriptor) & ~Accessor;
352
353
354
355
356
        return;
    }

    if (descriptor.isAccessorDescriptor()) {
        JSObject* getter = 0;
357
358
359
360
        if (descriptor.getterPresent())
            getter = descriptor.getterObject();
        else if (oldDescriptor.isAccessorDescriptor())
            getter = oldDescriptor.getterObject();
361
        JSObject* setter = 0;
362
363
364
365
        if (descriptor.setterPresent())
            setter = descriptor.setterObject();
        else if (oldDescriptor.isAccessorDescriptor())
            setter = oldDescriptor.setterObject();
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

        GetterSetter* accessor = GetterSetter::create(exec);
        if (getter)
            accessor->setGetter(exec->globalData(), getter);
        if (setter)
            accessor->setSetter(exec->globalData(), setter);

        entryInMap->set(exec->globalData(), this, accessor);
        entryInMap->attributes = descriptor.attributesOverridingCurrent(oldDescriptor) & ~DontDelete;
        return;
    }

    ASSERT(descriptor.isGenericDescriptor());
    entryInMap->attributes = descriptor.attributesOverridingCurrent(oldDescriptor);
}

static bool reject(ExecState* exec, bool throwException, const char* message)
{
    if (throwException)
        throwTypeError(exec, message);
    return false;
}

// Defined in ES5.1 8.12.9
bool JSArray::defineOwnNumericProperty(ExecState* exec, unsigned index, PropertyDescriptor& descriptor, bool throwException)
{
    ASSERT(index != 0xFFFFFFFF);

    if (!inSparseMode()) {
        // Fast case: we're putting a regular property to a regular array
        // FIXME: this will pessimistically assume that if attributes are missing then they'll default to false
        // – however if the property currently exists missing attributes will override from their current 'true'
        // state (i.e. defineOwnProperty could be used to set a value without needing to entering 'SparseMode').
        if (!descriptor.attributes()) {
            ASSERT(!descriptor.isAccessorDescriptor());
            putByIndex(this, exec, index, descriptor.value());
            return true;
        }

        enterSparseMode(exec->globalData());
    }

    SparseArrayValueMap* map = m_storage->m_sparseValueMap;
    ASSERT(map);

    // 1. Let current be the result of calling the [[GetOwnProperty]] internal method of O with property name P.
    std::pair<SparseArrayValueMap::iterator, bool> result = map->add(this, index);
    SparseArrayEntry* entryInMap = &result.first->second;

    // 2. Let extensible be the value of the [[Extensible]] internal property of O.
    // 3. If current is undefined and extensible is false, then Reject.
    // 4. If current is undefined and extensible is true, then
    if (result.second) {
        if (!isExtensible()) {
            map->remove(result.first);
            return reject(exec, throwException, "Attempting to define property on object that is not extensible.");
        }

        // 4.a. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then create an own data property
        // named P of object O whose [[Value]], [[Writable]], [[Enumerable]] and [[Configurable]] attribute values
        // are described by Desc. If the value of an attribute field of Desc is absent, the attribute of the newly
        // created property is set to its default value.
        // 4.b. Else, Desc must be an accessor Property Descriptor so, create an own accessor property named P of
        // object O whose [[Get]], [[Set]], [[Enumerable]] and [[Configurable]] attribute values are described by
        // Desc. If the value of an attribute field of Desc is absent, the attribute of the newly created property
        // is set to its default value.
        // 4.c. Return true.

        PropertyDescriptor defaults;
        entryInMap->setWithoutWriteBarrier(jsUndefined());
        entryInMap->attributes = DontDelete | DontEnum | ReadOnly;
        entryInMap->get(defaults);

        putDescriptor(exec, entryInMap, descriptor, defaults);
        if (index >= m_storage->m_length)
            m_storage->m_length = index + 1;
        return true;
    }

    // 5. Return true, if every field in Desc is absent.
    // 6. Return true, if every field in Desc also occurs in current and the value of every field in Desc is the same value as the corresponding field in current when compared using the SameValue algorithm (9.12).
    PropertyDescriptor current;
    entryInMap->get(current);
    if (descriptor.isEmpty() || descriptor.equalTo(exec, current))
        return true;

    // 7. If the [[Configurable]] field of current is false then
    if (!current.configurable()) {
        // 7.a. Reject, if the [[Configurable]] field of Desc is true.
455
        if (descriptor.configurablePresent() && !descriptor.configurable())
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
            return reject(exec, throwException, "Attempting to change configurable attribute of unconfigurable property.");
        // 7.b. Reject, if the [[Enumerable]] field of Desc is present and the [[Enumerable]] fields of current and Desc are the Boolean negation of each other.
        if (descriptor.enumerablePresent() && current.enumerable() != descriptor.enumerable())
            return reject(exec, throwException, "Attempting to change enumerable attribute of unconfigurable property.");
    }

    // 8. If IsGenericDescriptor(Desc) is true, then no further validation is required.
    if (!descriptor.isGenericDescriptor()) {
        // 9. Else, if IsDataDescriptor(current) and IsDataDescriptor(Desc) have different results, then
        if (current.isDataDescriptor() != descriptor.isDataDescriptor()) {
            // 9.a. Reject, if the [[Configurable]] field of current is false.
            if (!current.configurable())
                return reject(exec, throwException, "Attempting to change access mechanism for an unconfigurable property.");
            // 9.b. If IsDataDescriptor(current) is true, then convert the property named P of object O from a
            // data property to an accessor property. Preserve the existing values of the converted property‘s
            // [[Configurable]] and [[Enumerable]] attributes and set the rest of the property‘s attributes to
            // their default values.
            // 9.c. Else, convert the property named P of object O from an accessor property to a data property.
            // Preserve the existing values of the converted property‘s [[Configurable]] and [[Enumerable]]
            // attributes and set the rest of the property‘s attributes to their default values.
        } else if (current.isDataDescriptor() && descriptor.isDataDescriptor()) {
            // 10. Else, if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true, then
            // 10.a. If the [[Configurable]] field of current is false, then
            if (!current.configurable() && !current.writable()) {
                // 10.a.i. Reject, if the [[Writable]] field of current is false and the [[Writable]] field of Desc is true.
                if (descriptor.writable())
                    return reject(exec, throwException, "Attempting to change writable attribute of unconfigurable property.");
                // 10.a.ii. If the [[Writable]] field of current is false, then
                // 10.a.ii.1. Reject, if the [[Value]] field of Desc is present and SameValue(Desc.[[Value]], current.[[Value]]) is false.
                if (descriptor.value() && !sameValue(exec, descriptor.value(), current.value()))
                    return reject(exec, throwException, "Attempting to change value of a readonly property.");
            }
            // 10.b. else, the [[Configurable]] field of current is true, so any change is acceptable.
        } else {
490
            ASSERT(current.isAccessorDescriptor() && current.getterPresent() && current.setterPresent());
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
            // 11. Else, IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) are both true so, if the [[Configurable]] field of current is false, then
            if (!current.configurable()) {
                // 11.i. Reject, if the [[Set]] field of Desc is present and SameValue(Desc.[[Set]], current.[[Set]]) is false.
                if (descriptor.setterPresent() && descriptor.setter() != current.setter())
                    return reject(exec, throwException, "Attempting to change the setter of an unconfigurable property.");
                // 11.ii. Reject, if the [[Get]] field of Desc is present and SameValue(Desc.[[Get]], current.[[Get]]) is false.
                if (descriptor.getterPresent() && descriptor.getter() != current.getter())
                    return reject(exec, throwException, "Attempting to change the getter of an unconfigurable property.");
            }
        }
    }

    // 12. For each attribute field of Desc that is present, set the correspondingly named attribute of the property named P of object O to the value of the field.
    putDescriptor(exec, entryInMap, descriptor, current);
    // 13. Return true.
    return true;
}

void JSArray::setLengthWritable(ExecState* exec, bool writable)
{
    ASSERT(isLengthWritable() || !writable);
    if (!isLengthWritable() || writable)
        return;

    enterSparseMode(exec->globalData());

    SparseArrayValueMap* map = m_storage->m_sparseValueMap;
    ASSERT(map);
    map->setLengthIsReadOnly();
}

// Defined in ES5.1 15.4.5.1
bool JSArray::defineOwnProperty(JSObject* object, ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor, bool throwException)
{
    JSArray* array = static_cast<JSArray*>(object);

    // 3. If P is "length", then
    if (propertyName == exec->propertyNames().length) {
        // All paths through length definition call the default [[DefineOwnProperty]], hence:
        // from ES5.1 8.12.9 7.a.
531
        if (descriptor.configurablePresent() && descriptor.configurable())
532
533
            return reject(exec, throwException, "Attempting to change configurable attribute of unconfigurable property.");
        // from ES5.1 8.12.9 7.b.
534
        if (descriptor.enumerablePresent() && descriptor.enumerable())
535
536
537
538
539
540
541
            return reject(exec, throwException, "Attempting to change enumerable attribute of unconfigurable property.");

        // a. If the [[Value]] field of Desc is absent, then
        // a.i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", Desc, and Throw as arguments.
        if (descriptor.isAccessorDescriptor())
            return reject(exec, throwException, "Attempting to change access mechanism for an unconfigurable property.");
        // from ES5.1 8.12.9 10.a.
542
        if (!array->isLengthWritable() && descriptor.writablePresent() && descriptor.writable())
543
544
545
            return reject(exec, throwException, "Attempting to change writable attribute of unconfigurable property.");
        // This descriptor is either just making length read-only, or changing nothing!
        if (!descriptor.value()) {
546
547
            if (descriptor.writablePresent())
                array->setLengthWritable(exec, descriptor.writable());
548
549
550
551
552
553
554
555
556
557
558
559
560
561
            return true;
        }
        
        // b. Let newLenDesc be a copy of Desc.
        // c. Let newLen be ToUint32(Desc.[[Value]]).
        unsigned newLen = descriptor.value().toUInt32(exec);
        // d. If newLen is not equal to ToNumber( Desc.[[Value]]), throw a RangeError exception.
        if (newLen != descriptor.value().toNumber(exec)) {
            throwError(exec, createRangeError(exec, "Invalid array length"));
            return false;
        }

        // Based on SameValue check in 8.12.9, this is always okay.
        if (newLen == array->length()) {
562
563
            if (descriptor.writablePresent())
                array->setLengthWritable(exec, descriptor.writable());
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
            return true;
        }

        // e. Set newLenDesc.[[Value] to newLen.
        // f. If newLen >= oldLen, then
        // f.i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and Throw as arguments.
        // g. Reject if oldLenDesc.[[Writable]] is false.
        if (!array->isLengthWritable())
            return reject(exec, throwException, "Attempting to change value of a readonly property.");
        
        // h. If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true.
        // i. Else,
        // i.i. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be deleted.
        // i.ii. Let newWritable be false.
        // i.iii. Set newLenDesc.[[Writable] to true.
        // j. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and Throw as arguments.
        // k. If succeeded is false, return false.
        // l. While newLen < oldLen repeat,
        // l.i. Set oldLen to oldLen – 1.
        // l.ii. Let deleteSucceeded be the result of calling the [[Delete]] internal method of A passing ToString(oldLen) and false as arguments.
        // l.iii. If deleteSucceeded is false, then
585
        if (!array->setLength(exec, newLen, throwException)) {
586
587
588
589
            // 1. Set newLenDesc.[[Value] to oldLen+1.
            // 2. If newWritable is false, set newLenDesc.[[Writable] to false.
            // 3. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and false as arguments.
            // 4. Reject.
590
591
            if (descriptor.writablePresent())
                array->setLengthWritable(exec, descriptor.writable());
592
593
594
595
            return false;
        }

        // m. If newWritable is false, then
596
597
598
599
600
        // i. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length",
        //    Property Descriptor{[[Writable]]: false}, and false as arguments. This call will always
        //    return true.
        if (descriptor.writablePresent())
            array->setLengthWritable(exec, descriptor.writable());
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
        // n. Return true.
        return true;
    }

    // 4. Else if P is an array index (15.4), then
    bool isArrayIndex;
    // a. Let index be ToUint32(P).
    unsigned index = propertyName.toArrayIndex(isArrayIndex);
    if (isArrayIndex) {
        // b. Reject if index >= oldLen and oldLenDesc.[[Writable]] is false.
        if (index >= array->length() && !array->isLengthWritable())
            return reject(exec, throwException, "Attempting to define numeric property on array with non-writable length property.");
        // c. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing P, Desc, and false as arguments.
        // d. Reject if succeeded is false.
        // e. If index >= oldLen
        // e.i. Set oldLenDesc.[[Value]] to index + 1.
        // e.ii. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", oldLenDesc, and false as arguments. This call will always return true.
        // f. Return true.
        return array->defineOwnNumericProperty(exec, index, descriptor, throwException);
    }

    return JSObject::defineOwnProperty(object, exec, propertyName, descriptor, throwException);
}

625
bool JSArray::getOwnPropertySlotByIndex(JSCell* cell, ExecState* exec, unsigned i, PropertySlot& slot)
626
{
627
    JSArray* thisObject = jsCast<JSArray*>(cell);
628
    ArrayStorage* storage = thisObject->m_storage;
629
    
ggaren@apple.com's avatar
ggaren@apple.com committed
630
    if (i >= storage->m_length) {
barraclough@apple.com's avatar
barraclough@apple.com committed
631
        if (i > MAX_ARRAY_INDEX)
632
            return thisObject->methodTable()->getOwnPropertySlot(thisObject, exec, Identifier::from(exec, i), slot);
darin's avatar
darin committed
633
634
635
        return false;
    }

636
    if (i < thisObject->m_vectorLength) {
637
638
639
        JSValue value = storage->m_vector[i].get();
        if (value) {
            slot.setValue(value);
darin's avatar
darin committed
640
641
642
            return true;
        }
    } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
643
644
        SparseArrayValueMap::iterator it = map->find(i);
        if (it != map->notFound()) {
645
            it->second.get(slot);
646
            return true;
darin's avatar
darin committed
647
648
649
        }
    }

650
    return JSObject::getOwnPropertySlot(thisObject, exec, Identifier::from(exec, i), slot);
darin's avatar
darin committed
651
652
}

653
654
bool JSArray::getOwnPropertySlot(JSCell* cell, ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
{
655
    JSArray* thisObject = jsCast<JSArray*>(cell);
darin's avatar
darin committed
656
    if (propertyName == exec->propertyNames().length) {
657
        slot.setValue(jsNumber(thisObject->length()));
darin's avatar
darin committed
658
659
660
661
        return true;
    }

    bool isArrayIndex;
662
    unsigned i = propertyName.toArrayIndex(isArrayIndex);
darin's avatar
darin committed
663
    if (isArrayIndex)
664
        return JSArray::getOwnPropertySlotByIndex(thisObject, exec, i, slot);
darin's avatar
darin committed
665

666
    return JSObject::getOwnPropertySlot(thisObject, exec, propertyName, slot);
darin's avatar
darin committed
667
668
}

669
bool JSArray::getOwnPropertyDescriptor(JSObject* object, ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor)
670
{
671
    JSArray* thisObject = jsCast<JSArray*>(object);
672
    if (propertyName == exec->propertyNames().length) {
673
        descriptor.setDescriptor(jsNumber(thisObject->length()), DontDelete | DontEnum);
674
675
        return true;
    }
676

677
    ArrayStorage* storage = thisObject->m_storage;
678
679
    
    bool isArrayIndex;
680
    unsigned i = propertyName.toArrayIndex(isArrayIndex);
681
    if (isArrayIndex) {
682
        if (i >= storage->m_length)
683
            return false;
684
        if (i < thisObject->m_vectorLength) {
685
            WriteBarrier<Unknown>& value = storage->m_vector[i];
686
            if (value) {
687
                descriptor.setDescriptor(value.get(), 0);
688
689
                return true;
            }
690
        } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
691
692
            SparseArrayValueMap::iterator it = map->find(i);
            if (it != map->notFound()) {
693
                it->second.get(descriptor);
694
                return true;
695
696
697
            }
        }
    }
698
    return JSObject::getOwnPropertyDescriptor(thisObject, exec, propertyName, descriptor);
699
700
}

701
702
703
// ECMA 15.4.5.1
void JSArray::put(JSCell* cell, ExecState* exec, const Identifier& propertyName, JSValue value, PutPropertySlot& slot)
{
704
    JSArray* thisObject = jsCast<JSArray*>(cell);
darin's avatar
darin committed
705
    bool isArrayIndex;
706
    unsigned i = propertyName.toArrayIndex(isArrayIndex);
darin's avatar
darin committed
707
    if (isArrayIndex) {
708
        putByIndex(thisObject, exec, i, value);
darin's avatar
darin committed
709
710
711
712
        return;
    }

    if (propertyName == exec->propertyNames().length) {
weinig@apple.com's avatar
weinig@apple.com committed
713
714
        unsigned newLength = value.toUInt32(exec);
        if (value.toNumber(exec) != static_cast<double>(newLength)) {
715
            throwError(exec, createRangeError(exec, "Invalid array length"));
darin's avatar
darin committed
716
717
            return;
        }
718
        thisObject->setLength(exec, newLength, slot.isStrictMode());
darin's avatar
darin committed
719
720
721
        return;
    }

722
    JSObject::put(thisObject, exec, propertyName, value, slot);
darin's avatar
darin committed
723
724
}

725
void JSArray::putByIndex(JSCell* cell, ExecState* exec, unsigned i, JSValue value)
726
{
727
    JSArray* thisObject = jsCast<JSArray*>(cell);
728
729
730
    thisObject->checkConsistency();

    ArrayStorage* storage = thisObject->m_storage;
731

732
    // Fast case - store to the vector.
733
    if (i < thisObject->m_vectorLength) {
734
        WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
735
736
737
738
739
740
741
742
743
744
        unsigned length = storage->m_length;

        // Update m_length & m_numValuesInVector as necessary.
        if (i >= length) {
            length = i + 1;
            storage->m_length = length;
            ++storage->m_numValuesInVector;
        } else if (!valueSlot)
            ++storage->m_numValuesInVector;

745
746
        valueSlot.set(exec->globalData(), thisObject, value);
        thisObject->checkConsistency();
darin's avatar
darin committed
747
748
749
        return;
    }

750
751
752
753
754
755
756
757
    // Handle 2^32-1 - this is not an array index (see ES5.1 15.4), and is treated as a regular property.
    if (UNLIKELY(i > MAX_ARRAY_INDEX)) {
        PutPropertySlot slot;
        thisObject->methodTable()->put(thisObject, exec, Identifier::from(exec, i), value, slot);
        return;
    }

    // For all other cases, call putByIndexBeyondVectorLength.
758
    thisObject->putByIndexBeyondVectorLength(exec, i, value);
759
    thisObject->checkConsistency();
760
761
}

762
NEVER_INLINE void JSArray::putByIndexBeyondVectorLength(ExecState* exec, unsigned i, JSValue value)
763
{
764
765
    JSGlobalData& globalData = exec->globalData();

766
    // i should be a valid array index that is outside of the current vector.
767
    ASSERT(i >= m_vectorLength);
768
    ASSERT(i <= MAX_ARRAY_INDEX);
769

770
    ArrayStorage* storage = m_storage;
darin's avatar
darin committed
771
    SparseArrayValueMap* map = storage->m_sparseValueMap;
ap@webkit.org's avatar
ap@webkit.org committed
772

773
774
    // First, handle cases where we don't currently have a sparse map.
    if (LIKELY(!map)) {
775
776
777
778
        // Update m_length if necessary.
        if (i >= storage->m_length)
            storage->m_length = i + 1;

779
780
781
        // Check that it is sensible to still be using a vector, and then try to grow the vector.
        if (LIKELY((isDenseEnoughForVector(i, storage->m_numValuesInVector)) && increaseVectorLength(i + 1))) {
            // success! - reread m_storage since it has likely been reallocated, and store to the vector.
782
            storage = m_storage;
783
            storage->m_vector[i].set(globalData, this, value);
784
            ++storage->m_numValuesInVector;
785
            return;
darin's avatar
darin committed
786
        }
787
788
789
        // We don't want to, or can't use a vector to hold this property - allocate a sparse map & add the value.
        map = new SparseArrayValueMap;
        storage->m_sparseValueMap = map;
790
        map->put(exec, this, i, value);
791
        return;
darin's avatar
darin committed
792
793
    }

794
795
796
797
798
799
800
801
802
803
804
805
    // Update m_length if necessary.
    unsigned length = storage->m_length;
    if (i >= length) {
        // Prohibit growing the array if length is not writable.
        if (map->lengthIsReadOnly()) {
            // FIXME: should throw in strict mode.
            return;
        }
        length = i + 1;
        storage->m_length = length;
    }

806
807
808
809
    // We are currently using a map - check whether we still want to be doing so.
    // We will continue  to use a sparse map if SparseMode is set, a vector would be too sparse, or if allocation fails.
    unsigned numValuesInArray = storage->m_numValuesInVector + map->size();
    if (map->sparseMode() || !isDenseEnoughForVector(length, numValuesInArray) || !increaseVectorLength(length)) {
810
        map->put(exec, this, i, value);
barraclough@apple.com's avatar
barraclough@apple.com committed
811
812
        return;
    }
darin's avatar
darin committed
813

814
    // Reread m_storage afterincreaseVectorLength, update m_numValuesInVector.
815
    storage = m_storage;
816
    storage->m_numValuesInVector = numValuesInArray;
817

818
819
820
821
    // Copy all values from the map into the vector, and delete the map.
    WriteBarrier<Unknown>* vector = storage->m_vector;
    SparseArrayValueMap::const_iterator end = map->end();
    for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it)
822
        vector[it->first].set(globalData, this, it->second.getNonSparseMode());
823
824
825
826
827
828
829
830
    delete map;
    storage->m_sparseValueMap = 0;

    // Store the new property into the vector.
    WriteBarrier<Unknown>& valueSlot = vector[i];
    if (!valueSlot)
        ++storage->m_numValuesInVector;
    valueSlot.set(globalData, this, value);
darin's avatar
darin committed
831
832
}

833
834
bool JSArray::deleteProperty(JSCell* cell, ExecState* exec, const Identifier& propertyName)
{
835
    JSArray* thisObject = jsCast<JSArray*>(cell);
darin's avatar
darin committed
836
    bool isArrayIndex;
837
    unsigned i = propertyName.toArrayIndex(isArrayIndex);
darin's avatar
darin committed
838
    if (isArrayIndex)
839
        return thisObject->methodTable()->deletePropertyByIndex(thisObject, exec, i);
darin's avatar
darin committed
840
841
842
843

    if (propertyName == exec->propertyNames().length)
        return false;

844
    return JSObject::deleteProperty(thisObject, exec, propertyName);
darin's avatar
darin committed
845
846
}

847
bool JSArray::deletePropertyByIndex(JSCell* cell, ExecState* exec, unsigned i)
848
{
849
    JSArray* thisObject = jsCast<JSArray*>(cell);
850
851
    thisObject->checkConsistency();

852
853
854
    if (i > MAX_ARRAY_INDEX)
        return thisObject->methodTable()->deleteProperty(thisObject, exec, Identifier::from(exec, i));

855
    ArrayStorage* storage = thisObject->m_storage;
856
    
857
    if (i < thisObject->m_vectorLength) {
858
        WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
859
860
861
        if (valueSlot) {
            valueSlot.clear();
            --storage->m_numValuesInVector;
862
        }
863
    } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
864
865
        SparseArrayValueMap::iterator it = map->find(i);
        if (it != map->notFound()) {
866
867
            if (it->second.attributes & DontDelete)
                return false;
868
            map->remove(it);
darin's avatar
darin committed
869
870
871
        }
    }

872
    thisObject->checkConsistency();
873
874
    return true;
}
875

876
877
static int compareKeysForQSort(const void* a, const void* b)
{
878
879
    unsigned da = *static_cast<const unsigned*>(a);
    unsigned db = *static_cast<const unsigned*>(b);
880
    return (da > db) - (da < db);
darin's avatar
darin committed
881
882
}

883
void JSArray::getOwnPropertyNames(JSObject* object, ExecState* exec, PropertyNameArray& propertyNames, EnumerationMode mode)
darin's avatar
darin committed
884
{
885
    JSArray* thisObject = jsCast<JSArray*>(object);
darin's avatar
darin committed
886
    // FIXME: Filling PropertyNameArray with an identifier for every integer
887
888
    // is incredibly inefficient for large arrays. We need a different approach,
    // which almost certainly means a different structure for PropertyNameArray.
darin's avatar
darin committed
889

890
    ArrayStorage* storage = thisObject->m_storage;
891
    
892
    unsigned usedVectorLength = min(storage->m_length, thisObject->m_vectorLength);
darin's avatar
darin committed
893
    for (unsigned i = 0; i < usedVectorLength; ++i) {
894
        if (storage->m_vector[i])
ap@webkit.org's avatar
ap@webkit.org committed
895
            propertyNames.add(Identifier::from(exec, i));
darin's avatar
darin committed
896
897
898
    }

    if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
899
        Vector<unsigned> keys;
900
901
        keys.reserveCapacity(map->size());
        
902
        SparseArrayValueMap::const_iterator end = map->end();
903
904
        for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it) {
            if (mode == IncludeDontEnumProperties || !(it->second.attributes & DontEnum))
905
                keys.append(static_cast<unsigned>(it->first));
906
907
        }

908
        qsort(keys.begin(), keys.size(), sizeof(unsigned), compareKeysForQSort);
909
        for (unsigned i = 0; i < keys.size(); ++i)
910
            propertyNames.add(Identifier::from(exec, keys[i]));
darin's avatar
darin committed
911
    }
912

913
914
915
    if (mode == IncludeDontEnumProperties)
        propertyNames.add(exec->propertyNames().length);

916
    JSObject::getOwnPropertyNames(thisObject, exec, propertyNames, mode);
darin's avatar
darin committed
917
918
}

919
920
921
922
923
ALWAYS_INLINE unsigned JSArray::getNewVectorLength(unsigned desiredLength)
{
    ASSERT(desiredLength <= MAX_STORAGE_VECTOR_LENGTH);

    unsigned increasedLength;
924
    unsigned maxInitLength = min(m_storage->m_length, 100000U);
925

926
927
    if (desiredLength < maxInitLength)
        increasedLength = maxInitLength;
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
    else if (!m_vectorLength)
        increasedLength = max(desiredLength, lastArraySize);
    else {
        // Mathematically equivalent to:
        //   increasedLength = (newLength * 3 + 1) / 2;
        // or:
        //   increasedLength = (unsigned)ceil(newLength * 1.5));
        // This form is not prone to internal overflow.
        increasedLength = desiredLength + (desiredLength >> 1) + (desiredLength & 1);
    }

    ASSERT(increasedLength >= desiredLength);

    lastArraySize = min(increasedLength, FIRST_VECTOR_GROW);

    return min(increasedLength, MAX_STORAGE_VECTOR_LENGTH);
}

darin@apple.com's avatar
darin@apple.com committed
946
bool JSArray::increaseVectorLength(unsigned newLength)
darin's avatar
darin committed
947
{
ap@webkit.org's avatar
ap@webkit.org committed
948
949
    // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
    // to the vector. Callers have to account for that, because they can do it more efficiently.
950
951
    if (newLength > MAX_STORAGE_VECTOR_LENGTH)
        return false;
ap@webkit.org's avatar
ap@webkit.org committed
952

953
    ArrayStorage* storage = m_storage;
darin's avatar
darin committed
954

955
    unsigned vectorLength = m_vectorLength;
darin's avatar
darin committed
956
    ASSERT(newLength > vectorLength);
957
    unsigned newVectorLength = getNewVectorLength(newLength);
958
    void* baseStorage = storage->m_allocBase;
darin's avatar
darin committed
959

960
961
962
963
    // Fast case - there is no precapacity. In these cases a realloc makes sense.
    if (LIKELY(!m_indexBias)) {
        if (!tryFastRealloc(baseStorage, storageSize(newVectorLength)).getValue(baseStorage))
            return false;
964

965
966
        storage = m_storage = reinterpret_cast_ptr<ArrayStorage*>(baseStorage);
        m_storage->m_allocBase = baseStorage;
967

968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
        WriteBarrier<Unknown>* vector = storage->m_vector;
        for (unsigned i = vectorLength; i < newVectorLength; ++i)
            vector[i].clear();

        m_vectorLength = newVectorLength;
        
        Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
        return true;
    }

    // Remove some, but not all of the precapacity. Atomic decay, & capped to not overflow array length.
    unsigned newIndexBias = min(m_indexBias >> 1, MAX_STORAGE_VECTOR_LENGTH - newVectorLength);
    // Calculate new stoarge capcity, allowing room for the pre-capacity.
    unsigned newStorageCapacity = newVectorLength + newIndexBias;
    void* newAllocBase;
    if (!tryFastMalloc(storageSize(newStorageCapacity)).getValue(newAllocBase))
        return false;
    // The sum of m_vectorLength and m_indexBias will never exceed MAX_STORAGE_VECTOR_LENGTH.
    ASSERT(m_vectorLength <= MAX_STORAGE_VECTOR_LENGTH && (MAX_STORAGE_VECTOR_LENGTH - m_vectorLength) >= m_indexBias);
    unsigned currentCapacity = m_vectorLength + m_indexBias;
    // Currently there is no way to report to the heap that the extra capacity is shrinking!
    if (newStorageCapacity > currentCapacity)
        Heap::heap(this)->reportExtraMemoryCost((newStorageCapacity - currentCapacity) * sizeof(WriteBarrier<Unknown>));
ap@webkit.org's avatar
ap@webkit.org committed
991

992
    m_vectorLength = newVectorLength;
993
994
995
996
997
998
999
1000
1001
1002
1003
    m_indexBias = newIndexBias;
    m_storage = reinterpret_cast_ptr<ArrayStorage*>(reinterpret_cast<WriteBarrier<Unknown>*>(newAllocBase) + m_indexBias);

    // Copy the ArrayStorage header & current contents of the vector, clear the new post-capacity.
    memmove(m_storage, storage, storageSize(vectorLength));
    for (unsigned i = vectorLength; i < m_vectorLength; ++i)
        m_storage->m_vector[i].clear();

    // Free the old allocation, update m_allocBase.
    fastFree(m_storage->m_allocBase);
    m_storage->m_allocBase = newAllocBase;
darin's avatar
darin committed
1004

1005
1006
    return true;
}
darin's avatar
darin committed
1007

1008
1009
// This method makes room in the vector, but leaves the new space uncleared.
bool JSArray::unshiftCountSlowCase(unsigned count)
1010
{
1011
1012
    // If not, we should have handled this on the fast path.
    ASSERT(count > m_indexBias);
1013

1014
    ArrayStorage* storage = m_storage;
1015

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
    // Step 1:
    // Gather 4 key metrics:
    //  * usedVectorLength - how many entries are currently in the vector (conservative estimate - fewer may be in use in sparse vectors).
    //  * requiredVectorLength - how many entries are will there be in the vector, after allocating space for 'count' more.
    //  * currentCapacity - what is the current size of the vector, including any pre-capacity.
    //  * desiredCapacity - how large should we like to grow the vector to - based on 2x requiredVectorLength.

    unsigned length = storage->m_length;
    unsigned usedVectorLength = min(m_vectorLength, length);
    ASSERT(usedVectorLength <= MAX_STORAGE_VECTOR_LENGTH);
    // Check that required vector length is possible, in an overflow-safe fashion.
    if (count > MAX_STORAGE_VECTOR_LENGTH - usedVectorLength)
1028
        return false;
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
    unsigned requiredVectorLength = usedVectorLength + count;
    ASSERT(requiredVectorLength <= MAX_STORAGE_VECTOR_LENGTH);
    // The sum of m_vectorLength and m_indexBias will never exceed MAX_STORAGE_VECTOR_LENGTH.
    ASSERT(m_vectorLength <= MAX_STORAGE_VECTOR_LENGTH && (MAX_STORAGE_VECTOR_LENGTH - m_vectorLength) >= m_indexBias);
    unsigned currentCapacity = m_vectorLength + m_indexBias;
    // The calculation of desiredCapacity won't overflow, due to the range of MAX_STORAGE_VECTOR_LENGTH.
    unsigned desiredCapacity = min(MAX_STORAGE_VECTOR_LENGTH, max(BASE_VECTOR_LEN, requiredVectorLength) << 1);

    // Step 2:
    // We're either going to choose to allocate a new ArrayStorage, or we're going to reuse the existing on.

    void* newAllocBase;
    unsigned newStorageCapacity;
    // If the current storage array is sufficiently large (but not too large!) then just keep using it.
    if (currentCapacity > desiredCapacity && isDenseEnoughForVector(currentCapacity, requiredVectorLength)) {
        newAllocBase = storage->m_allocBase;
        newStorageCapacity = currentCapacity;
    } else {
        if (!tryFastMalloc(storageSize(desiredCapacity)).getValue(newAllocBase))
            return false;
        newStorageCapacity = desiredCapacity;
        // Currently there is no way to report to the heap that the extra capacity is shrinking!
        if (desiredCapacity > currentCapacity)
            Heap::heap(this)->reportExtraMemoryCost((desiredCapacity - currentCapacity) * sizeof(WriteBarrier<Unknown>));
    }

    // Step 3:
    // Work out where we're going to move things to.

    // Determine how much of the vector to use as pre-capacity, and how much as post-capacity.
    // If the vector had no free post-capacity (length >= m_vectorLength), don't give it any.
    // If it did, we calculate the amount that will remain based on an atomic decay - leave the
    // vector with half the post-capacity it had previously.
    unsigned postCapacity = 0;
    if (length < m_vectorLength) {
        // Atomic decay, + the post-capacity cannot be greater than what is available.
        postCapacity = min((m_vectorLength - length) >> 1, newStorageCapacity - requiredVectorLength);
        // If we're moving contents within the same allocation, the post-capacity is being reduced.
        ASSERT(newAllocBase != storage->m_allocBase || postCapacity < m_vectorLength - length);
    }

    m_vectorLength = requiredVectorLength + postCapacity;
    m_indexBias = newStorageCapacity - m_vectorLength;
    m_storage = reinterpret_cast_ptr<ArrayStorage*>(reinterpret_cast<WriteBarrier<Unknown>*>(newAllocBase) + m_indexBias);

    // Step 4:
    // Copy array data / header into their new locations, clear post-capacity & free any old allocation.

    // If this is being moved within the existing buffer of memory, we are always shifting data
    // to the right (since count > m_indexBias). As such this memmove cannot trample the header.
    memmove(m_storage->m_vector + count, storage->m_vector, sizeof(WriteBarrier<Unknown>) * usedVectorLength);
    memmove(m_storage, storage, storageSize(0));

    // Are we copying into a new allocation?
    if (newAllocBase != m_storage->m_allocBase) {
        // Free the old allocation, update m_allocBase.
        fastFree(m_storage->m_allocBase);
        m_storage->m_allocBase = newAllocBase;

        // We need to clear any entries in the vector beyond length. We only need to
        // do this if this was a new allocation, because if we're using an existing
        // allocation the post-capacity will already be cleared, and in an existing
        // allocation we can only beshrinking the amount of post capacity.
        for (unsigned i = requiredVectorLength; i < m_vectorLength; ++i)
            m_storage->m_vector[i].clear();
    }
1095

ap@webkit.org's avatar
ap@webkit.org committed
1096
    return true;
darin's avatar
darin committed
1097
1098
}

1099
bool JSArray::setLength(ExecState* exec, unsigned newLength, bool throwException)
darin's avatar
darin committed
1100
{
1101
1102
    checkConsistency();

1103
    ArrayStorage* storage = m_storage;
1104
    unsigned length = storage->m_length;
darin's avatar
darin committed
1105

1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
    // If the length is read only then we enter sparse mode, so should enter the following 'if'.
    ASSERT(isLengthWritable() || storage->m_sparseValueMap);

    if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
        // Fail if the length is not writable.
        if (map->lengthIsReadOnly())
            return reject(exec, throwException, StrictModeReadonlyPropertyWriteError);

        if (newLength < length) {
            // Copy any keys we might be interested in into a vector.
            Vector<unsigned> keys;
            keys.reserveCapacity(min(map->size(), static_cast<size_t>(length - newLength)));
            SparseArrayValueMap::const_iterator end = map->end();
            for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it) {
1120
                unsigned index = static_cast<unsigned>(it->first);
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
                if (index < length && index >= newLength)
                    keys.append(index);
            }

            // Check if the array is in sparse mode. If so there may be non-configurable
            // properties, so we have to perform deletion with caution, if not we can
            // delete values in any order.
            if (map->sparseMode()) {
                qsort(keys.begin(), keys.size(), sizeof(unsigned), compareKeysForQSort);
                unsigned i = keys.size();
                while (i) {
                    unsigned index = keys[--i];
                    SparseArrayValueMap::iterator it = map->find(index);
                    ASSERT(it != map->notFound());
                    if (it->second.attributes & DontDelete) {
                        storage->m_length = index + 1;
                        return reject(exec, throwException, "Unable to delete property.");
                    }
                    map->remove(it);
                }
            } else {
                for (unsigned i = 0; i < keys.size(); ++i)
                    map->remove(keys[i]);
                if (map->isEmpty()) {
                    delete map;
                    storage->m_sparseValueMap = 0;
                }
            }
        }
    }

darin's avatar
darin committed